
1University of Virginia Computer Science
2NVIDIA Research

A Hardware Redundancy and
Recovery Mechanism for Reliable

Scientific Computation on
Graphics Processors

Jeremy W. Sheaffer1

David P. Luebke2

Kevin Skadron1



Reliable Graphics?

• Transient errors can cause
undesirable visual artifacts, such as:
• Single pixel errors

• Single texel errors

• Single vertex errors

• Corrupt a frame

• Crash the computer

• Corrupt rendering state





Motivation

• GPGPU

• One or more correct answers are expected

• Very different expectation from that of graphics

• More (exactly) like CPU expectations

• Massive parallelism provides opportunities that
are impractical or impossible on CPUs



Reducing Error Rates

• Error rates can be reduced by

• Reducing chip operating temperature

• Reducing crosstalk

• Increasing transistor sizes

• Increasing supply voltage

• Decreasing clock frequency

• Increasing power supply quality

• …



Reducing Error Rates

• Error rates can be reduced by

• …

• Detection and correction



CPU Transient Fault Mitigation

• ECC and parity

• Scrubbing

• Used in conjunction with ECC to reduce 2-bit errors

• Larger or radiation-hardened gates

• Hardware fingerprinting or state dump with
rollback

• Redundancy

• Primarily employed to protect logic

• Also sometimes used for memory



Reliability Through Redundancy

• Primary topic in recent transient fault reliability
literature

• Many clever ideas including
• Triple redundancy with voting

• Lockstepped processors

• Redundant Multithreading

• CRT—Chip-level Redundantly Threaded processors

• SRT—Simultaneous and Redundantly Threaded processors

• The concepts of a ‘Sphere of Replication’ and leading and
trailing threads

• Memoization of redundant results



Designing a Reliable Functional Unit

• It is impossible to guarantee 100%
reliability

• Anything outside of the sphere of
replication must be either:

• Protected, as with ECC, or

• Unprotected and unimportant (as per an ACE
analysis)



Example: A Reliable ALU



Motivation for Reliable GPGPU

• GPGPU is becoming important enough that
vendors are devoting (human) resources to
it

• GPGPU is already being applied in domains
where errors are unacceptable

• GPGPU offers a much higher performance
per dollar than the traditional
supercomputing infrastructure



GPGPU Redundancy

• At what granularity should the redundancy occur?

• Possibilities include:

• Multiple GPUs

• Shader binary (software)

• Quad/Warp

• Shader unit (hardware)

• ALU

• Tightly coupled with comparator placement and datapath

• Possible to analytically eliminate many possibilities

• Experimentally evaluate remaining



Design Concerns

• Solution must not impact graphics performance

• Solution must be very cheap to implement

• GPU vendors are very reluctant to sacrifice real estate for
anything which does not boost performance

• GPGPU is arguably becoming important

• But it does not drive the market

• (and it probably never will)



Performance Concerns

• It should be faster than 2x

• It should use less than 2x energy

• A well designed solution should be able to
achieve these goals by taking advantage of
increased memory locality of redundant
texture fetches



A Reliable GPGPU Solution



A Reliable GPGPU Solution

VS: Vertex Stream

DB: Domain Buffer

GP: Geometry Processing

FC: Fragment Core

FB: Framebuffer



The Domain Buffer

•Stores assembled triangle
information in protected memory

•Reads datapath from ROP for
reissue

•Datapath could be
repurposed from the unified
shader model or f-buffer
datapaths

•Reissues with fragment(s) from
ROP as stencil mask(s)



Other Pipeline Changes

•Rasterizer produces two of every
fragment

•Guarantees that identical
fragments are not computed
on the same core

•The fragment engine has no
changes

•ROP uses a modified full/empty-
bit semantic to act as the
comparator



Experiments

• Using a series of stressmarks to challenge
the memory system

• Compare with a baseline, unreliable system and
with a perfect cache system in which cache
accesses never go to memory

• Measure performance, power, energy, cache hit rate,
and memory throughput



Improved Cache Performance



Reduced Memory Traffic



Better Core Utilization



Less than 2x performance overhead



Less than 2x power and energy



Conclusions

• We have presented a reliable GPGPU system

• Our solution utilizes a domain buffer, to reissue
corrupt fragments, dual issue from the rasterizer,
and repurposes ROP as the comparator

• This work provides a complete solution to GPU
reliability for last-generation hardware

• The important ideas map directly to current and
foreseeable future hardware, but details become more
difficult



Future Work

• Scatter functionality in CTM and CUDA
provide difficult challenges

• Other aspects of the presented work map
very well to new architectures, though
details must be worked out



Acknowledgements

• The simulation framework on which we built this
work was developed by Greg Johnson, Chris Burns,
Alexander Joly, and William R. Mark at the
University of Texas, Austin

• This work was supported by NSF grants CCF-
0429765, CCR-0306404, the Army Research Office
under grant no. W911NF-04-1-0288, a research
grant from Intel MRL, and an ATI graduate
fellowship



Thank You

• Questions?


