
University of California Davis, *NVIDIA
Corporation

Scan Primitives for GPU
Computing

Scan Primitives for GPU
Computing

Shubho Sengupta, Mark Harris*, Yao

Zhang, John Owens

MotivationMotivation

• Raw compute power and bandwidth of GPUs

increasing rapidly

• Programmable unified shader cores

• Ability to program outside the graphics framework

• However lack of efficient data-parallel primitives

and algorithms

MotivationMotivation

• Current efficient algorithms either have streaming

access

• 1:1 relationship between input and output element

36140713

47251824

MotivationMotivation

• Or have small “neighborhood” access

• N:1 relationship between input and output element

where N is a small constant

36140713

39754784

• However interesting problems require more

general access patterns

• Changing one element affects everybody

• Stream Compaction

MotivationMotivation

30140703

31473

0 Null

• Split

• Needed for Sort

MotivationMotivation

TTTFFFFF

FTFFTFFT

• Common scenarios in parallel computing

• Variable output per thread

• Threads want to perform a split – radix sort, building

trees

• “What came before/after me?”

• “Where do I start writing my data?”

• Scan answers this question

MotivationMotivation

System OverviewSystem Overview

Low Level Primitives
Scan and variants

Higher Level Primitives
Enumerate, Distribute,…

Algorithms
Sort, Sparse matrix operations,…

Libraries and
Abstractions
for data
parallel

programming

ScanScan

• Each element is a sum of all the elements to the left
of it (Exclusive)

• Each element is a sum of all the elements to the left
of it and itself (Inclusive)

2216151111430 Exclusive

25221615111143 Inclusive

36140713 Input

Scan – the pastScan – the past

• First proposed in APL (1962)

• Used as a data parallel primitive in the Connection

Machine (1990)

• Guy Blelloch used scan as a primitive for various

parallel algorithms (1990)

Scan – the presentScan – the present

• First GPU implementation by Daniel Horn (2004),

O(n logn)

• Subsequent GPU implementations by

• Hensley (2005) O(n logn), Sengupta (2006) O(n), Greß

(2006) O(n) 2D

• NVIDIA CUDA implementation by Mark Harris

(2007), O(n), space efficient

Scan – the implementationScan – the implementation

• O(n) algorithm – same work complexity as the

serial version

• Space efficient – needs O(n) storage

• Has two stages – reduce and down-sweep

Scan - ReduceScan - Reduce

36140713

96547743

1465411743

2565411743

• log n steps

• Work halves each step

• O(n) work

• In place, space efficient

Scan - Down SweepScan - Down Sweep

065411743

116540743

1661144703

2216151111430

2565411743 • log n steps

• Work doubles each step

• O(n) work

• In place, space efficient

• Input

• Scan within each segment in parallel

• Output

30 770 710

Segmented ScanSegmented Scan

13 407 361

Segmented ScanSegmented Scan

• Introduced by Schwartz (1980)

• Forms the basis for a wide variety of algorithms

• Quicksort, Sparse Matrix-Vector Multiply, Convex Hull

Segmented Scan - ChallengesSegmented Scan - Challenges

• Representing segments

• Efficiently storing and propagating information

about segments

• Scans over all segments should happen in parallel

• Overall work and space complexity should be O(n)

regardless of the number of segments

Representing SegmentsRepresenting Segments

• Possible Representations are

• Vector of segment lengths

• Vector of indices which are segment heads

• Vector of flags: 1 for segment head, 0 if not

• First two approaches hard to parallelize as different

size as input

• We use the third as it is the same size as input

• Space-Inefficient to store one flag in an integer

• Store one flag in a byte striped across 32 words

• Reduces bank conflicts

Segmented Scan – Flag StorageSegmented Scan – Flag Storage

Segmented Scan – implementationSegmented Scan – implementation

• Similar to Scan

• O(n) space and work complexity

• Has two stages – reduce and down-sweep

Segmented Scan – implementationSegmented Scan – implementation

• Unique to segmented scan

• Requires an additional flag per

element for intermediate computation

• Additional flags get set in reduce step

• Additional book-keeping with flags in down-sweep

• These flags prevent data movement between

segments

Platform – NVIDIA CUDA and G80Platform – NVIDIA CUDA and G80

• Threads grouped into blocks

• Threads in a block can cooperate through fast on-

chip memory

• Hence programmer must partition problem into

multiple blocks to use fast memory

• Adds complexity but usually much faster code

Segmented Scan – Large InputSegmented Scan – Large Input

• Operations in parallel over all the segments

• Irregular workload since segments can be of any

length

• Can simulate divide-and-conquer recursion since

additional segments can be generated

Segmented Scan – AdvantagesSegmented Scan – Advantages

Primitives - EnumeratePrimitives - Enumerate

• Input: a true/false vector

• Output: count of true values to the left of each element

• Useful in stream compact

• Output for each true element is the address for
that element in the compacted array

TFTFF T T F

11000 2 3 3

Primitives - DistributePrimitives - Distribute

• Input: a vector with segments

• Output: the first element of a segment copied over

all other elements

713 104 36

333 444 66

Primitives – DistributePrimitives – Distribute

• Set all elements except the head elements to zero

• Do inclusive segmented scan

• Used in quicksort to distribute pivot

333 444 66

003 004 06

• Input: a vector with true/false elements. Possibly

segmented

• Output: Stable split within each segment – falses on

the left, trues on the right

Primitives – Split and SegmentPrimitives – Split and Segment

0713 3614

03 71 61 34

False

Primitives – Split and SegmentPrimitives – Split and Segment

• Can be implemented with Enumerate

• One enumerate for the falses going left to right

• One enumerate for the trues going right to left

• Used in quicksort

Applications – QuicksortApplications – Quicksort

• Traditional algorithm GPU unfriendly

• Recursive

• Segments vary in length, unequal workload

• Primitives built on segmented scan solves both

problems

• Allows operations on all segments in parallel

• Simulates recursion by generating new segments in each iteration

Applications – QuicksortApplications – Quicksort

Input64735 8 9 3

Distribute pivot55555 5 5 5

Input > pivotTFTFF T T F

Split and Segment7 6 8 93435

Applications – QuicksortApplications – Quicksort

7 6 8 93435

Distribute pivot7 7 7 75555

Input ≥ pivotT F T TFFFT

Split and segment5343 6 7 8 9

Applications – QuicksortApplications – Quicksort

5343 6 7 8 9

Distribute pivot5333 6 7 7 7

Input > pivotFFTF F F T T

Split and segment5 63 43 7 8 9

Applications – Sparse M-V multiplyApplications – Sparse M-V multiply

• Dense matrix operations are much faster on GPU

than CPU

• However Sparse matrix operations on GPU much

slower

• Hard to implement on GPU

• Non-zero entries in row vary in number

Applications – Sparse M-V multiplyApplications – Sparse M-V multiply

• Three different approaches

• Rows sorted by number of non-zero entries [Bolz]

• Stored as diagonals and processed them in sequence

[Krüger]

• Rows computed in parallel but runtime determined by

longest row [Brook]

Applications – Sparse M-V multiplyApplications – Sparse M-V multiply

y0
y1

y2

a 0 b
c d e
0 0 f

x0
x1

x2

=

221020 Column Index

520 Row begin Index

Non-zero elementsba edc f

Applications – Sparse M-V multiplyApplications – Sparse M-V multiply

x2x2x1x0x2x0x =

fx2cx0+ dx1 + ex2ax0+ bx2

Backward inclusive segmented scan
Pick first element in segment

ba edc f

bx2ax0 cx0 dx1 ex2 fx2

221020Column Index

Applications – Tridiagonal SolverApplications – Tridiagonal Solver

• Implemented Kass and Miller’s shallow water solver

• Water surface described as a 2D array of heights

• Global movement of data

• From one end to the other and back

• Suits the Reduce/Down-sweep structure of scan

Applications – Tridiagonal SolverApplications – Tridiagonal Solver

• Tridiagonal system of n rows solved in parallel

• Then for each of the m columns in parallel

• Read pattern is similar to but more complex than

scan

Results - ScanResults - Scan

1.1x
slower

3x
slower

4.8 x
slower

Forward Backward Forward Backward

Scan Segmented Scan

T
im

e
 (
N
o
rm

a
li
z
e
d
)

Extra
computation for

sequential
memory access

Packing and Unpacking Flags
Non sequential I/O

Saving State

Packing and Unpacking Flags
Non sequential I/O

Saving State

Results – Sparse M-V MultiplyResults – Sparse M-V Multiply

• Input: “raefsky” matrix, 3242 x 3242, 294276

elements

• GPU (215 MFLOPS) half as fast as CPU “oski” (522

MFLOPS)

• Hard to do irregular computation

• Most time spent in backward segmented scan

Results - SortResults - Sort

2x
slower

13x
slower

4x
slower

Global Block GPU CPU

Radix Sort Quick Sort

T
im

e
 (
N
o
rm

a
li
z
e
d
)

Slow Merge

Slow Merge
Packing/Unpacking Flags

Complex Kernel

Results – Tridiagonal solverResults – Tridiagonal solver

• 256 x 256 grid: 367 simulation steps per second

• Dominated by the overhead of mapping and

unmapping vertex buffers

• 3x faster than a CPU cyclic reduction solver

• 12x faster when using shared memory

Improved Results Since PublicationImproved Results Since Publication

• Twice as fast for all variants of scan and sparse
matrix-vector multiply

• Scan

• More work per thread – 8 elements vs 2 before

• Segmented Scan

• No packing of flags

• Sequential memory access

• More optimizations possible

Contribution and Future WorkContribution and Future Work

• Algorithm and implementation of segmented scan

on GPU

• First implementation of quicksort on GPU

• Primitives appropriate for complex algorithms

• Global data movement, unbalanced workload, recursive

• Scan never occurs in serial computation

• Tiered approach, standard library and interfaces

AcknowledgmentsAcknowledgments

• Jim Ahrens, Guy Blelloch, Jeff Inman, Pat

McCormick

• David Luebke, Ian Buck

• Jeff Bolz

• Eric Lengyel

• Department of Energy

• National Science Foundation

Shallow Water SimulationShallow Water Simulation

