
Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture © NVIDIA Corporation 2007

Tesla GPU Computing

John Nickolls

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing2

Outline

Tesla GPU Computing
GPU Computing Architecture
Multithreading and Thread Arrays
Data Parallel Problem Decomposition
Parallel Memory Sharing
Transparent Scalability
CUDA C Programming Model
Summary

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing3

NVIDIA Tesla
Scalable High Density Computing
Massively Multi-threaded Parallel Computing

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing4

Parallel Computing on a GPU

NVIDIA GPU Computing Architecture
is a scalable parallel computing platform

In laptops, desktops, workstations, servers

8-series GPUs deliver 50 to 200 GFLOPS
on compiled parallel C applications
GPU parallel performance pulled by the
insatiable demands of PC game market

GPU parallelism is doubling every year
Programming model scales transparently

Programmable in C with CUDA tools
Multithreaded SPMD model uses application
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing5

Workstation HPC

CPUCPU

Quadro GPUQuadro GPU

Tesla GPUTesla GPU
Tesla
GPU
Tesla
GPU

Tesla
GPU
Tesla
GPU

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing6

Tesla GPU Computing Server
Industry Standard 1U Chassis

110-220VAC

Gen 2 PCI Express
Switch Connections 4 Tesla GPU Computing Processors

Power Supply
40x56mm Fans

17.5” W x 29.5” D x 1U Chassis
with rail mounting

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing7

Tesla GPU Computing Server

CPUCPU Core
Logic
Core
Logic

PCI-E Gen2 x16
Adapter card

NVIDIA
Switch
NVIDIA
Switch

Power
Supply

PCI-
Express
Cables

PCI-
Express
Cables

CPU ServerCPU Server

Tesla GPU ServerTesla GPU Server

FSBFSB

PCI-E x16 Gen 2PCI-E x16 Gen 2
NVIDIA SwitchNVIDIA Switch

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

PCI-E x16 Gen 2PCI-E x16 Gen 2

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

NVIDIA
Tesla
GPU

PCI-E Gen2 x16
Adapter card

PCI-E x16 Gen 2PCI-E x16 Gen 2

CPUCPU
FSBFSB PCI-E x16 Gen 2PCI-E x16 Gen 2

Core
Logic
Core
Logic

CPU ServerCPU Server

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing8

Server

GPU Computing Server

Tesla S870
4 x 8-Series GPUs
550W typical (800W max)
over 500 gigaflops per GPU
1U height

Work Station

Deskside Supercomputer

GPU Computing Processor

Tesla D870
2 x 8-Series GPU
550W Max
over 500 gigaflops per GPU

Tesla C870
1 x 8-Series GPU
170W max
over 500 gigaflops per GPU

Tesla System Solutions

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing9

Tesla C870 GPU Implementation

681 million transistors
470 mm2 in 90 nm CMOS

128 thread processors
518 GFLOPS peak
1.35 GHz processor clock

1.5 GB DRAM
76 GB/s peak
800 MHz GDDR3 clock
384 pin DRAM interface

ATX form factor card
PCI Express x16
170 W max with DRAM

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing10

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

L2

Memory

Work DistributionHost CPU

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

Tesla GPU Computing Processor
Massively multithreaded parallel computing platform
12,288 concurrent threads, hardware managed
128 Thread Processor cores at 1.35 GHz == 518 GFLOPS peak
GPU Computing features enable C on Graphics Processing Unit

SP

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing11

SM Multithreaded Multiprocessor

SM has 8 SP Thread Processors
32 GFLOPS peak at 1.35 GHz
IEEE 754 32-bit floating point
32-bit integer

SM has 2 SFU Special Function Units
Scalar ISA

Memory load/store
Texture fetch
Branch, call, return
Barrier synchronization instruction

Multithreaded Instruction Unit
768 Threads, hardware multithreaded
24 SIMD warps of 32 threads
Independent MIMD thread execution
Hardware thread scheduling

16KB Shared Memory
Concurrent threads share data
Low latency load/store

Texture L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

SP

Shared
Memory

MT IU

SM

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing12

Thread Processor Datapath

Executes 32-bit IEEE floating point instructions:
FADD, FMUL, FMAD, FMIN, FMAX, FSET, F2I, I2F

Performs 32-bit integer instructions:
IADD, IMUL24, IMAD24, IMIN, IMAX, ISET, I2I
SHR, SHL, AND, OR, XOR

Fully pipelined
Latency and area optimized

IEEE 754 compliant FADD, FMUL
Round to nearest even, round toward zero
Handles special numbers, NaNs, infinities properly
Flushes denormal operands and results to zero

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing13

Special Function Unit (SFU)

Executes transcendental function instructions
RCP, RSQRT, EXP2, LOG2, SIN, COS
2 SFUs per SM yields ¼ instruction throughput

Evaluates function approximations
Quadratic interpolation with
Enhanced Minimax Approximation
Interpolates pixel attributes

Accuracy ranges from 22.5 to 24.0 good bits
1/x in the interval [1,2) is 24 bits, 1 ulp

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing14

SM SIMD Multithreaded Execution

Weaving: the original parallel thread
technology is about 10,000 years old
Warp: the set of 32 parallel threads
that execute a SIMD instruction

SM hardware implements zero-overhead
warp and thread scheduling
Each SM executes up to 768 concurrent
threads, as 24 SIMD warps of 32 threads

Threads can execute independently
SIMD warp diverges and converges when
threads branch independently
Best efficiency and performance when
threads of a warp execute together
SIMD across threads (not just data) gives
easy single-thread scalar programming
with SIMD efficiency

warp 8 instruction 11

SM multithreaded
instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing15

Programmer Partitions Problem
with Data-Parallel Decomposition

CUDA Programmer partitions
problem into Grids, one Grid
per sequential problem step

Programmer partitions Grid
into result Blocks computed
independently in parallel

GPU thread array computes
result Block

Programmer partitions Block
into elements computed
cooperatively in parallel

GPU thread computes result
element

GPU
Grid 1
Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Sequence

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Step 1:

Step 2:

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing16

Cooperative Thread Array
CTA Implements CUDA Thread Block

A CTA is an array of concurrent threads
that cooperate to compute a result
A CUDA thread block is a CTA

Programmer declares CTA:
CTA size 1 to 512 concurrent threads
CTA shape 1D, 2D, or 3D
CTA dimensions in threads

CTA threads execute thread program
CTA threads have thread id numbers
CTA threads share data and synchronize
Thread program uses thread id to select
work and address shared data

CTA
CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing17

SM Multiprocessor Executes CTAs

CTA threads run concurrently
SM assigns thread id #s
SM manages thread execution

CTA threads share data & results
In Memory and Shared Memory
Synchronize at barrier instruction

Per-CTA Shared Memory
Keeps data close to processor
Minimize trips to global Memory

CTA threads access global Memory
76 GB/sec GDDR DRAM

t0 t1 t2 … tm

CTA 0

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

CTA 1

SM 1SM 0

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing18

Data Parallel Levels

Thread
Computes result elements
Thread id number

CTA – Cooperative Thread Array
Computes result Block
1 to 512 threads per CTA
CTA (Block) id number

Grid of CTAs
Computes many result Blocks
1 to many CTAs per Grid

Sequential Grids
Compute sequential problem steps

Thread

t0 t1 t2 … tm

CTA

Grid

CTA 0 CTA 1 CTA 2 CTA n

. . .

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing19

Parallel Memory Sharing

Local Memory: per-thread
Private per thread
Auto variables, register spill

Shared Memory: per-CTA
Shared by threads of CTA
Inter-thread communication

Global Memory: per-application
Shared by all threads
Inter-Grid communication

Thread

Local Memory

Grid 0

. . .
Global

Memory

. . .

Grid 1

Sequential
Grids
in Time

CTA

Shared
Memory

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing20

How to Scale GPU Computing?

GPU parallelism varies widely
Ranges from 8 cores to many 100s of cores
Ranges from 100 to many 1000s of threads
GPU parallelism doubles yearly

Graphics performance scales with GPU parallelism
Data parallel mapping of pixels to threads
Unlimited demand for parallel pixel shader threads and cores

Challenge:
Scale Computing performance with GPU parallelism

Program must be insensitive to the number of cores
Write one program for any number of SM cores
Program runs on any size GPU without recompiling

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing21

Transparent Scalability

Programmer uses multi-level data parallel decomposition
Decomposes problem into sequential steps (Grids)
Decomposes Grid into computing parallel Blocks (CTAs)
Decomposes Block into computing parallel elements (threads)

GPU hardware distributes CTA work to available SM cores
GPU balances CTA work load across any number of SM cores
SM core executes CTA program that computes Block

CTA program computes a Block independently of others
Enables parallel computing of Blocks of a Grid
No communication among Blocks of same Grid
Scales one program across any number of parallel SM cores

Programmer writes one program for all GPU sizes
Program does not know how many cores it uses
Program executes on GPU with any number of cores

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing22

CUDA Programming Model:
Grids, Blocks, and Threads

Execute a sequence of kernels
on GPU computing device
A kernel executes as a Grid of
thread blocks
A thread block is an array of
threads that can cooperate
Threads within the same block
synchronize and share data in
Shared Memory

Execute thread blocks as CTAs
on multithreaded
multiprocessor SM cores

CPU

Kernel 1

Kernel 2

GPU device
Grid 1
Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Sequence

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing23

Single-Program Multiple-Data (SPMD)

CUDA integrated CPU + GPU application C program
Serial C code executes on CPU
Parallel Kernel C code executes on GPU thread blocks

CPU Serial Code
Grid 0

. . .

. . .

GPU Parallel Kernel
KernelA<<< nBlk, nTid >>>(args);

Grid 1
CPU Serial Code

GPU Parallel Kernel
KernelB<<< nBlk, nTid >>>(args);

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing24

CUDA Programming Model:
Thread Memory Spaces

Each kernel thread can read:
Thread Id per thread
Block Id per block
Constants per grid
Texture per grid

Each thread can read and write:
Registers per thread
Local memory per thread
Shared memory per block
Global memory per grid

Host CPU can read and write:
Constants per grid
Texture per grid
Global memory per grid

Thread Id, Block Id

Registers

Constants

Texture

Global Memory

Shared
Memory

Kernel
Thread

Program
Written in C

Local Memory

© NVIDIA Corporation 2007gh07 Hot3D: Tesla GPU Computing25

Summary
Tesla GPU Computing Architecture

Architecture enables parallel C on GPUs
Massively multithreaded – 1000s of threads
Executes parallel threads and thread arrays
Threads cooperate via Shared and Global memory
Scales to any number of parallel processor cores
Now on: Tesla C870, D870, S870, GeForce 8800/8600/8500,
and Quadro FX 5600/4600

CUDA Programming model
C program for GPU threads
Scales transparently to GPU parallelism
Compiler, tools, libraries, and driver for GPU Computing

http://www.nvidia.com/Tesla
http://developer.nvidia.com/CUDA

