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Previous work

• Dedicated hardware

• Address Recalculation Pipeline [Regan and Pose 1994]

• Talisman [Torborg and Kajiya 1996]

• Image based rendering

• Image Warping [McMillan and Bishop 1995]

• Post Rendering 3D Warp [Mark et al. 1997]



Previous work

• Interactivity for expensive renderers

• Frameless rendering [Bishop et al. 1994]

• Render Cache [Walter et al. 1999]

• Holodeck/Tapestry [Simmons et al. 1999/2000]

• Corrective Texturing [Stamminger et al 2000]

• Shading Cache [Tole et al. 2002]



Our approach

• Explore coherence in real-time rendering
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Requirements

• Load/reuse path must be cheaper

• Cache hit ratio must be high

• Lookup/update must be efficient
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First insight

• Cache only visible surface fragments

• Use screen space buffer to store cache

• Output sensitive memory

• Keep everything in GPU memory

• Leverage hardware Z-buffering for eviction



Cache hit ratio



Cache hit ratio results



[Walter et al. 1999]

Second insight

• Use reverse mapping

• Recompute scene geometry at each frame

• Leverage hardware filtering for lookup



Third insight

• Do not need to reproject at the pixel level

• Hard work is performed at the vertex level



Address calculation
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Hit or miss?
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Hit or miss?

cached depth

Time t

• Load cached depth

• Compare with
expected depth

expected depth



Third insight

• Do not need to reproject at the pixel level

• Hard work is performed at the vertex level

• Pass old vertex coords as texture coords

• Leverage perspective-correct interpolation

• One single final division within pixel shader



What to cache?

• Slow varying, expensive computations

• procedural albedo

• Values required in multiple passes

• color in depth of field or motion blur

• Samples within a sampling process

• amortized shadow map tests



Refreshing the cache

• Cached entries become stale with time
• View dependent effects, repeated resampling

• Implicit (multipass algorithms)
• Flush entire cache each time step

• Random updates
• Refresh random fraction of pixels

• Amortized update
• Combine cache with new values at each frame



Motion blur

60fps brute force

3 passes



Reuse albedo in multipass

• For each time step

• Fully compute albedo in first pass

• For each remaining pass

• Lookup into first pass and try to reuse



Motion blur

60fps brute force
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Motion blur

60fps cached
30fps brute force

6 passes



Motion blur

30fps cached
14 passes



Randomly distributed refresh

1/4th updated

Error plot



Amortized super-sampling

• Cache updated by recursive filter rule

• Lambda controls variance reduction...

• ...but also the lifespan



Trade-offs

Variance
Lifespan



Variance reduction at work

4 tap PCF16 tap PCF



Reusing shadow map tests

• At each frame, perform new shadow tests

• Read running sum from cache

• Blend the two values

• Update cache and display results



Variance reduction at work

4 tap PCF16 tap PCF



Variance reduction at work

16 tap PCF 4 tap amortized



Conclusions

• Shading every frame anew is wasteful

• We can reuse some of the shading
computations from previous frames

• Use reverse reprojection caching to do that
in real-time rendering applications

• Less work per frame = faster rendering



Future work

• Track surface points and select shader level
of detail based on screenspace speed

• Change refresh rate per pixel based on rate
of cached value change

• Use code analysis to automatically select
appropriate values to cache


