L0007/

Accelerating Real-Time Shading with
Reverse Reprojection Caching

Diego Nehab! Pedro V. Sander? Jason Lawrence?
Natalya Tatarchuk* John R. Isidoro*

1Princeton University
2Hong Kong University of Science and Technology
3University of Virginia
4Advanced Micro Devices, Inc.




Motivation




Motivation




Previous work

e Dedicated hardware

e Address Recalculation Pipeline [Regan and Pose 1994]

e Talisman [Torborg and Kajiya 1996]

¢ Image based rendering

¢ Image Warping [McMillan and Bishop 1995]

e Post Rendering 3D Warp [Mark et al. 1997]




Previous work

e Interactivity for expensive renderers

e Frameless rendering [Bishop et al. 1994]

e Render Cache [walter et al. 1999]

e Holodeck/Tapestry [Simmons et al. 1999/2000]
e Corrective Texturing [Stamminger et al 2000]

e Shading Cache [Tole et al. 2002]




Our approach

e Explore coherence in real-time rendering

IRECOIMIPULE




Our approach

e Explore coherence in real-time rendering

Lozicl/Ratise

IRECOIMIPULE




Requirements

¢ | oad/reuse path must be cheaper
e Cache hit ratio must be high
e | ookup/update must be efficient

Fead/IREUSE!

IRECOIMIPULE




First insight

e Cache only visible surface fragments
e Use screen space buffer to store cache
e OQutput sensitive memory
e Keep everything in GPU memory

e L everage hardware Z-buffering for eviction




9
i)
(©
&
-
£
v
£
O
S
O




Cache hit ratio results

Q0
-

(@)
-

N

Par’éhenon
Heroine
Ninja

P
o
SN
N
()
O
C
Q
-
Q
-
@)
W)

N

B
20 30 40

Frame number




Second insight

e Use reverse mapping
e Recompute scene geometry at each frame

e | everage hardware filtering for lookup

.
Mirn. . . RSO

[Walter et al. 1999]




Third insight

e Do not need to reproject at the pixel level

e Hard work is performed at the vertex level




Address calculation

Time t+1




Hit or miss?

Time t+1




Hit or miss?

e | oad cached depth

e Compare with
expected depth

cached depth

: |




Third insight

e Do not need to reproject at the pixel level

e Hard work is performed at the vertex level
e Pass old vertex coords as texture coords
e | everage perspective-correct interpolation

e One single final division within pixel shader




What to cache?

¢ Slow varying, expensive computations

e procedural albedo

¢ Values required in multiple passes

e color in depth of field or motion blur

e Samples within a sampling process

e amortized shadow map tests




Refreshing the cache

e Cached entries become stale with time

¢ \View dependent effects, repeated resampling
e Tmplicit (multipass algorithms)

e Flush entire cache each time step
e Random updates

e Refresh random fraction of pixels

e Amortized update

e Combine cache with new values at each frame




Motion blur

3 passes

60fps brute force




Reuse albedo in multipass

e For each time step
e Fully compute albedo in first pass

e For each remaining pass

e Lookup into first pass and try to reuse




Motion blur

3 passes

60fps brute force




Motion blur

6 passes

60fps cached
30fps brute force




Motion blur

14 passes
30fps cached




Randomly distributed refresh

1/4th updated

.

P e "7" e
Nl e

Error plot




Amortized super-sampling

e Cache updated by recursive filter rule
Ct_|_]_ — )\Ct —I‘ (]. — )\)St_l_]_

e L ambda controls variance reduction...

var(C) __
var(s) 1—|—>\ <1

e ...but also the lifespan




Trade-offs

I
Variance

Lifespan




Variance reduction at work

16 tap PCF 4 tap PCF




Reusing shadow map tests

e At each frame, perform new shadow tests
e Read running sum from cache
¢ Blend the two values

e Update cache and display results




Variance reduction at work

16 tap PCF 4 tap PCF




Variance reduction at work

16 tap PCF 4 tap amortized




Conclusions

e Shading every frame anew is wasteful

¢ \We can reuse some of the shading
computations from previous frames

e Use reverse reprojection caching to do that
in real-time rendering applications

e | ess work per frame = faster rendering




Future work

e Track surface points and select shader level
of detail based on screenspace speed

e Change refresh rate per pixel based on rate

of cached value change

e Use code analysis to automatically select
appropriate values to cache




