

Tight Frame Normal Map Compression

Jacob Munkberg Ola Olsson Tomas Akenine-Möller Jacob Ström

Lund University

Ericsson Research

• Introduction to normal mapping

• Previous work

- Tight Frame Compression
- Evaluation

• Introduction to normal mapping

• Previous work

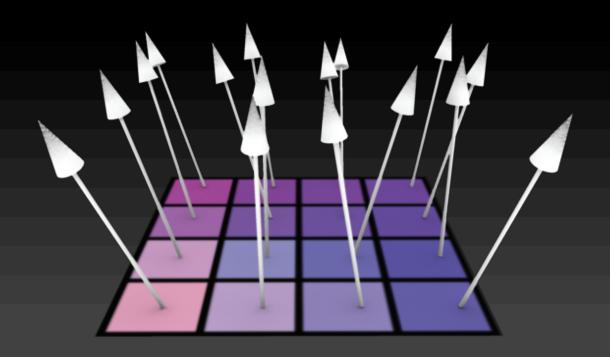
- Tight Frame Compression
- Evaluation

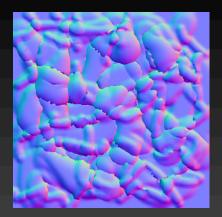
Normal Maps

- Add geometric detail with texture maps
- Store value of the local normal vector
- Realistic, detailed appearance at low cost

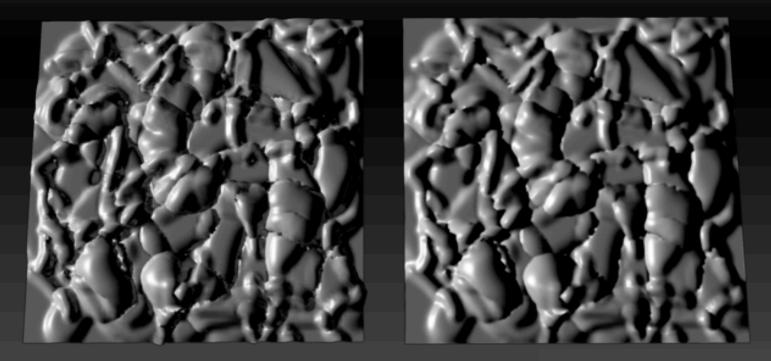
- Create two versions of geometry
 - Lo-res
 - overall shape

- Hi-res
 - shape + details

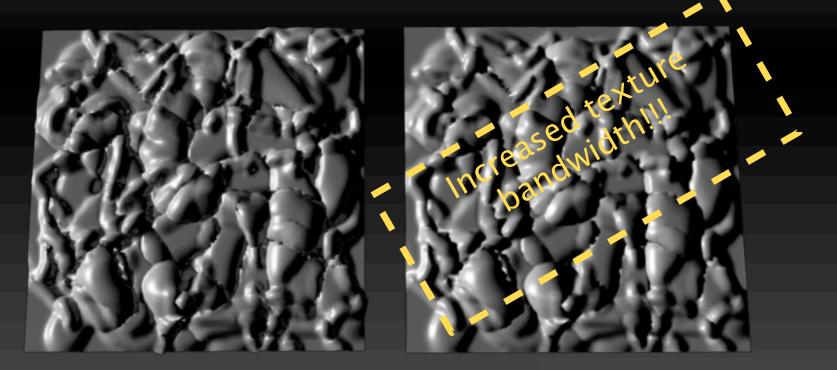

• Shoot rays


 from the lo-res surface

to the hi-res surface


 Store the normal vector from the intersection points in an RGB texture

• Render lo res surface + normal map



20k triangles

2 triangles + normal map

Motivation

• We need compression!

20k triangles

2 triangles + normal map

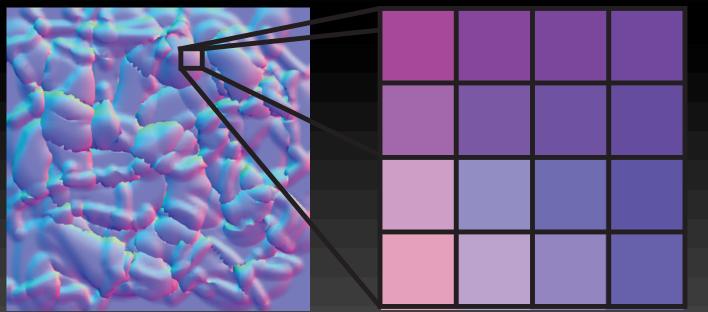
Introduction to normal mapping

• Previous work

- Tight Frame Compression
- Evaluation

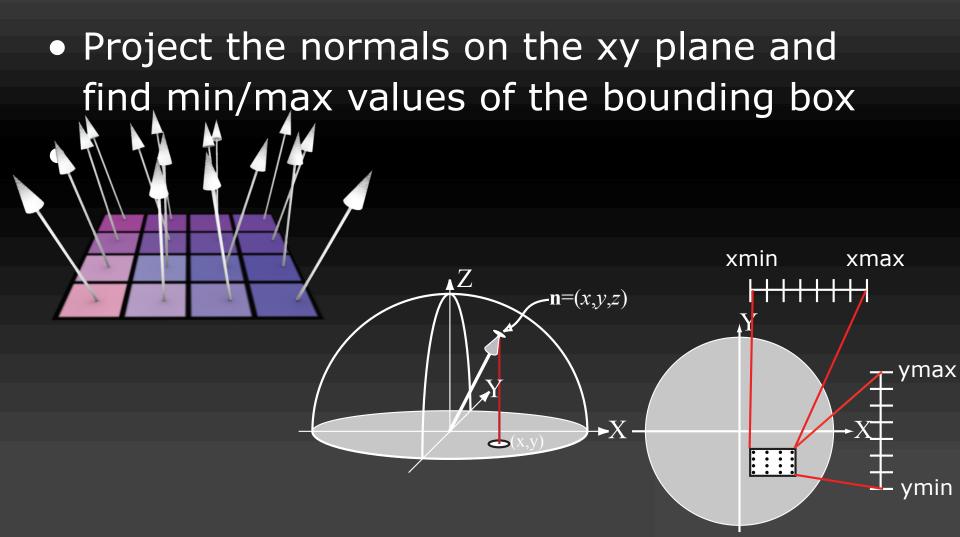
Previous Work

- Surface normal compression [Deering 95]
- S3 Texture Compression/DXTC [Iourcha99]
- 3Dc [ATI05]
 - Dedicated format for normal maps
- e3Dc [Munkberg 06]
 - Enhanced 3Dc with rotations and diff-coding
- Adaptive bit rate [Wong06,Yang06]
- Vector Quantization [Yamakasi et. al 06]

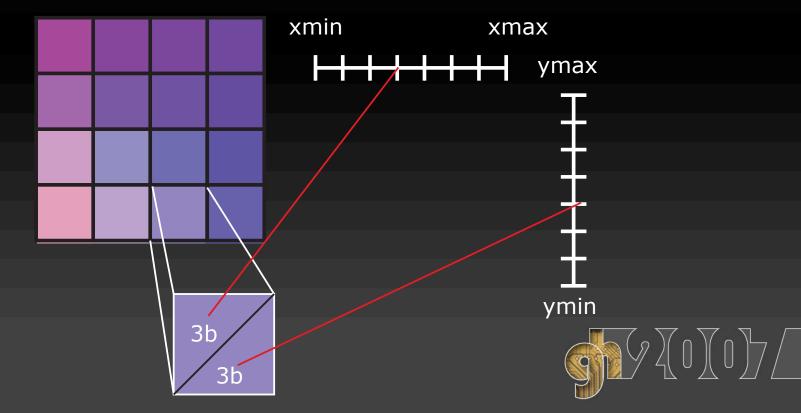

Design choices

• Fixed rate encoding at 8 bpp

- Fast random access
- Simple decompressor
- 4x4 texel blocks
- Use advantages from e3Dc
 - Rotation encoding
 - Differential encoding
 - Variable point distribution
- Exploit coherence between channels ()]]


3Dc Overview

• Divide the input file in 4x4 blocks of texels



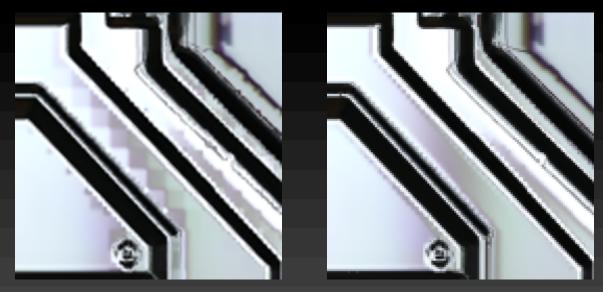
3Dc - Projection

3Dc - Texel Quantization

Map each texel to a quantized (x,y) value
Eight levels in x & y; (3,3) bits to select (x_i,y_i)

3Dc - Compressed Block

Compressed form


- 4x8 bits for Xmin, Xmax, Ymin, Ymax
- 6x16 bits for per texel index
- Total: 128 bits per block : 8 bits per texel

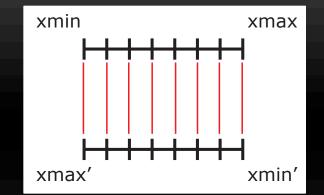
6b	6b	6b	6b		
				xmin	xmax
6b	6b	6b	6b	8b	8b
6b	6b	6b	6b	ymin	ymax 8b
6b	6b	6b	6b	8b	8b

Problems with 3Dc

• Difficult scenarios

• Slow gradients, sharp edges, directed features

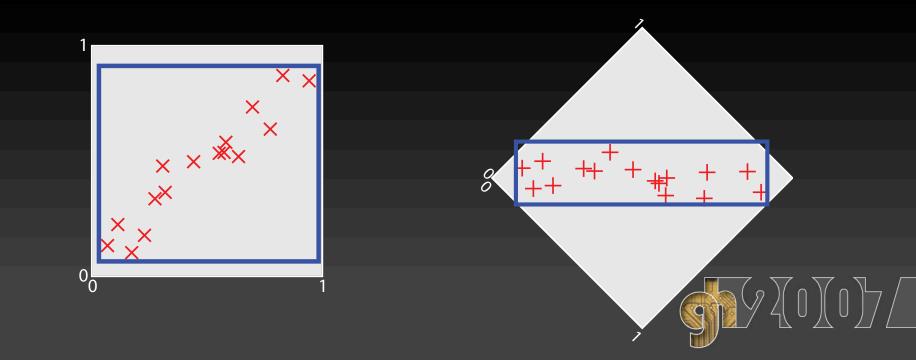
3Dc


Original

3Dc can be improved - e3Dc

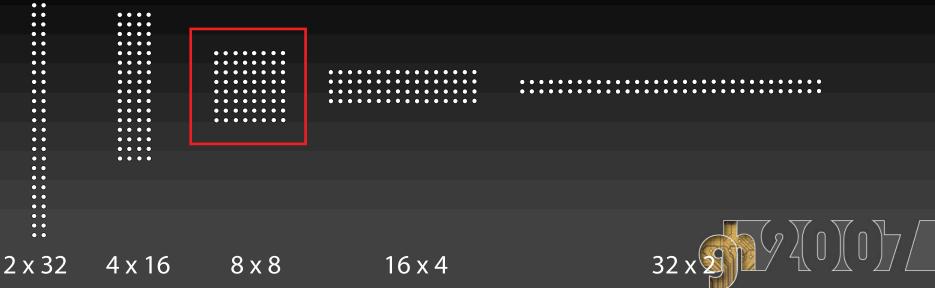
• Observation (used in DXT1)

- Swap min & max values
 - → same reconstruction levels
- One bit unused per channel!



• Use these to signal new modes!

Х	Y	mode
X _{min} < X _{max}	y _{min} < y _{max}	Standard 3Dc
$X_{min} \ge X_{max}$	ymin < y _{max}	Rotation 30
X _{min} < X _{max}	$y_{min} \ge y_{max}$	Rotation 60
$x_{min} \ge x_{max}$	$y_{min} \ge y_{max}$	Differential mode


Rotation Compression

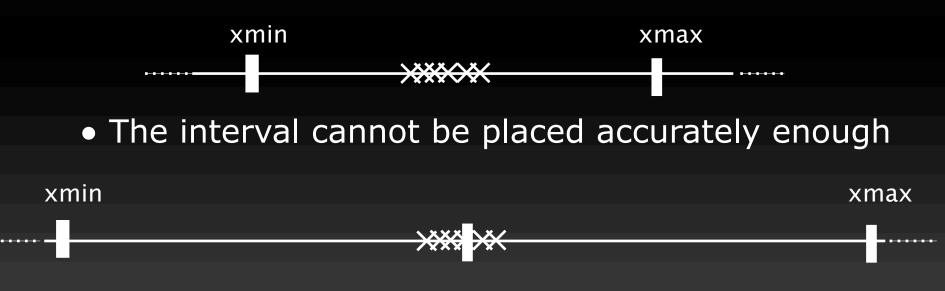
Rotate coordinate frame for a more compact bounding box
e3Dc uses three angles: 0, 30 and 60 degrees

Variable Point Distribution

- 3Dc : points in a 8x8 grid
- Our approach : use aspect ratio of bbox
 - BBox twice as wide -> 16x4 instead of 8x8
 - Automatic selection -> No extra cost

- Variable Point Distribution

-


-

	•••••																																	
	•••••																				2	Dc												
	•••••																				5													
	•••••																																	
		••	• • •	• •	•																													
		•••	•••	•••	•																													
	•••••	••	• • •	• •	•																													
	•••••	•••	•••	•••	•			•••••	••••••	•••••••	•••••••		••••••																					
		••	•••	• •	•																													
	•••••	••	•••	•••	•	· ·		•	•	•	•	•	•							-		-												
••	• • • •	••	•••	• •	•	•••	•	• • •	••	••	••	••	••	•	• • •	• •	••	••	•••	•••	••	• •	•••	• • •	••	• • •	• • •	•						
•••	• • • •	•••	•••	•••	•	•••			•••	•••	•••	•••	•••	•	•••			•••	•••		•••	•••			•••	•••								
• •	• • • •	• •	• • •	• • •	•	• • •	•	• • •	• •	• •	• •	• •	• •																					
• •	• • • •	• •	• • •	• •	•																													
••	• • • •	•••	• • •	•••	•																													
•••	••••	•••	•••	•••																														
••																																		
• •	• • • •																																	
• •	• • • •																																	
••	• • • •																																	
•••	• • • •																																	
•••	• • • •																																	
• •																7							_ .	-						-				
• •															- V	ar	ĩa	bl	e	20	In			sti	rib	UI	10	n	In	e3	3D	C		
••																																		
••																																		
•••																																		
• •																																		
••																																		
••																																		
•••																																		
• •																														7	$\overline{\langle}$			/
••																											1		and a	$\left(\Omega \right)$	_)(_	\cap		7 /
••																											K	:0	5 m	\bigvee				11
••																																	Л	
••																												7						

Differential Encoding

• Slowly varying normals are problematic:

• Smallest interval is too wide (range/255)

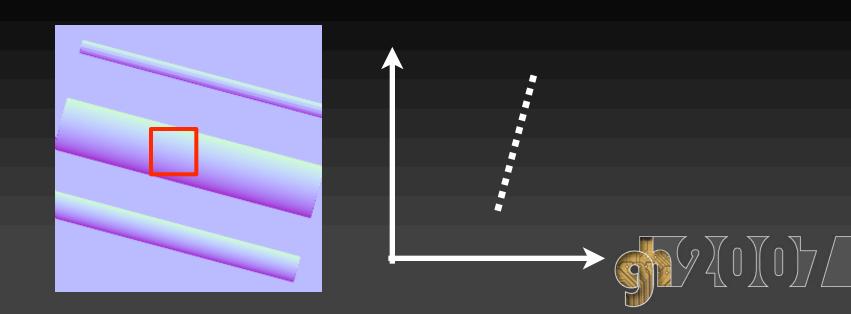
Differential Encoding

• Slowly varying normals are problematic:

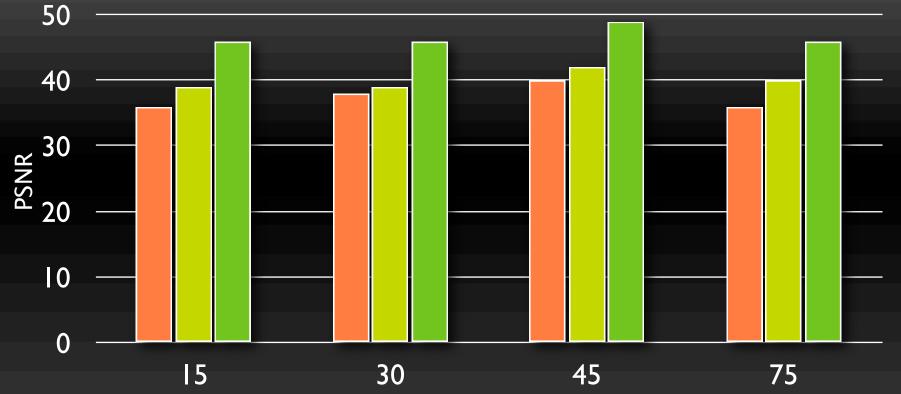
• Smallest interval is too wide (range/255)

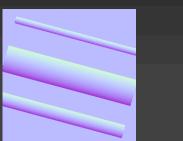
Reinterpret the bits differentially! (xmin,xmax) \rightarrow (xmin*, Δx)

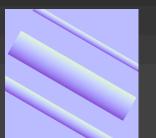
Introduction to normal mapping

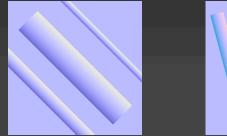

• Previous work

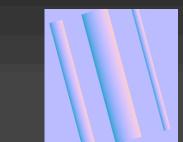
- Tight Frame Compression
- Evaluation

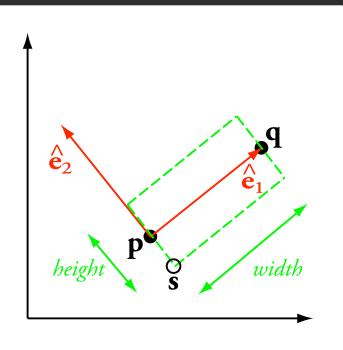

Tight Frame Compression


Example: directed lines coherence between channels!

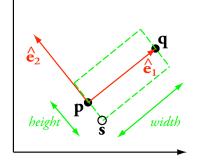



Tight Frame Encoding



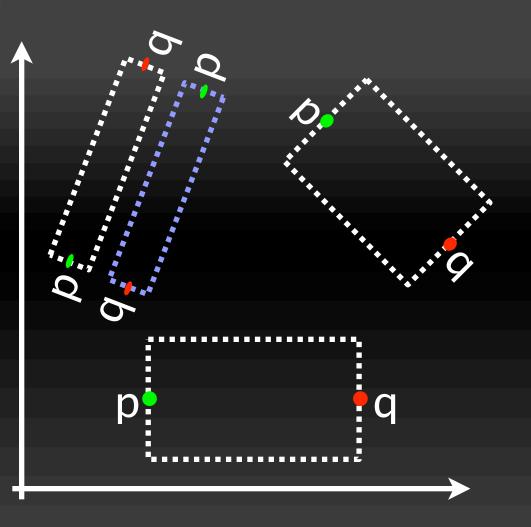


Tight Frame Compression


- OBB is tighter than AABB
- Store two point *p* & *q*
 - Enough to define local coordinate frame e₁, e₂
 - arbitrary rotation
- Store box aspect ratio
 - aspect ratio = height/width

Tight Frame Bit Layout

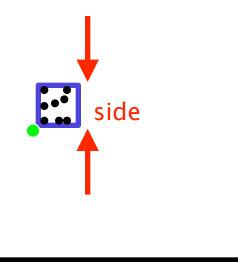
- Target: 128 bits per block 8 bpp
- Indices with 6 x 16 bits as before
- 32 bits left for encoding OBB
 - p & q are encoded using 7+7 bits each
 - Four bits for the aspect ratio, a
 - sixteen levels as a_i = 1/32 + h_i/16, i = 0...15
 Ex:

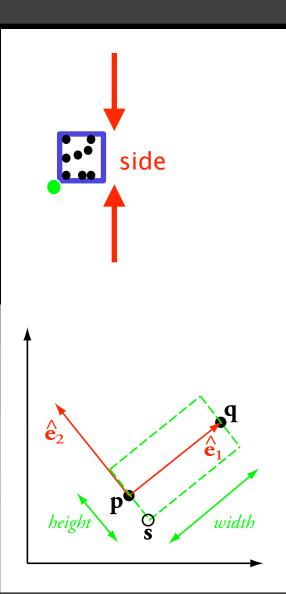


Additional Mode

Unused bit combinations?

•
$$p_x >= q_x \& p_y >= q_y$$


Use to flag a mode!


Tight Frame Differential Mode

- Trigger when $p_x >= q_x$ and $p_y >= q_y$
- Encode all normals in a small square
 - Limit the square side length
- Compact representation but high resolution!
 - Lower left corner 2x11 bits
 - Side of the square: 8 bits
 - 8x8 grid over the square
 - 6x16 + 2x11 + 8 = 126 bits

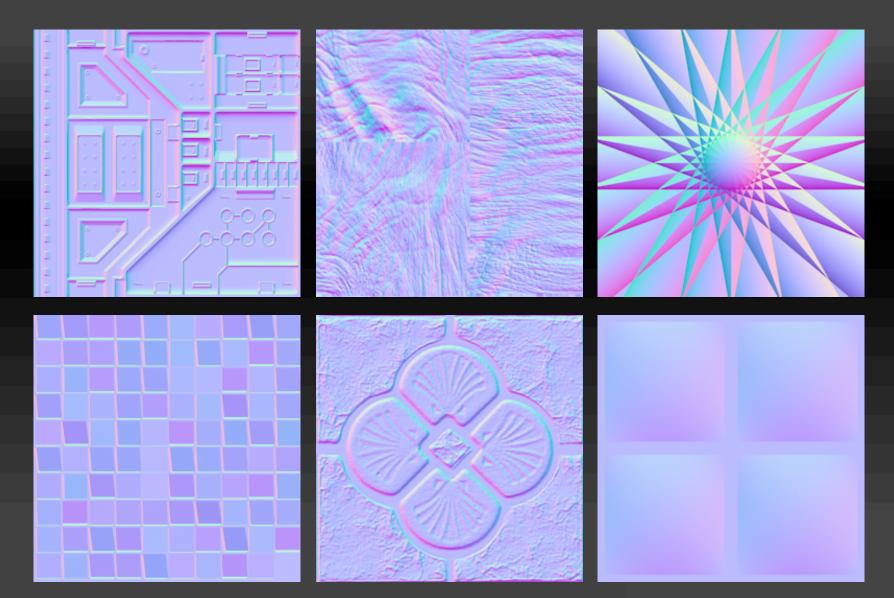
Tight Frame Differential Mode

- Differential mode resolution
 - corner 2x11 bits, side: 8 bits,
 - Limit max square side to 1/4
 - min square size = $1/(4*2^8)$ = 1/1024
- Standard mode resolution
 - p and q with (2x7) bits each
 - max size = 1
 - min square size = 1/128

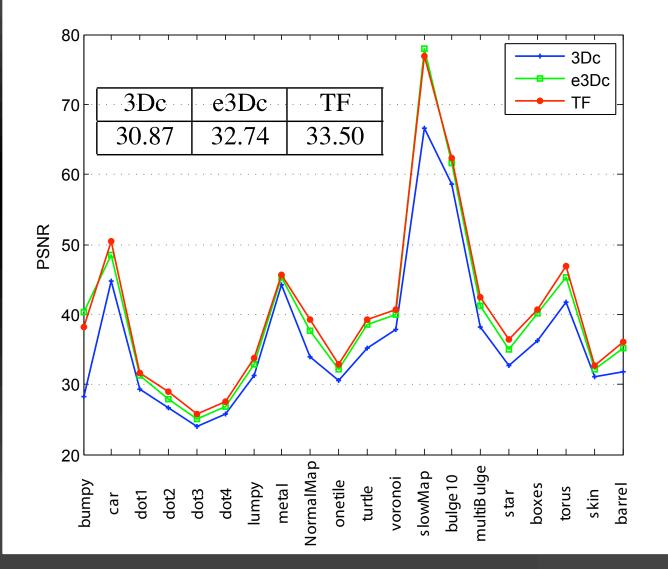
Introduction to normal mapping

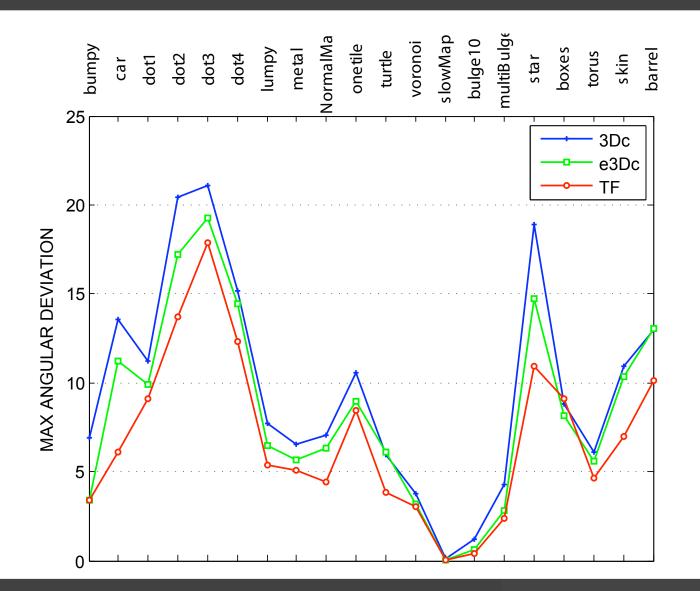
• Previous work

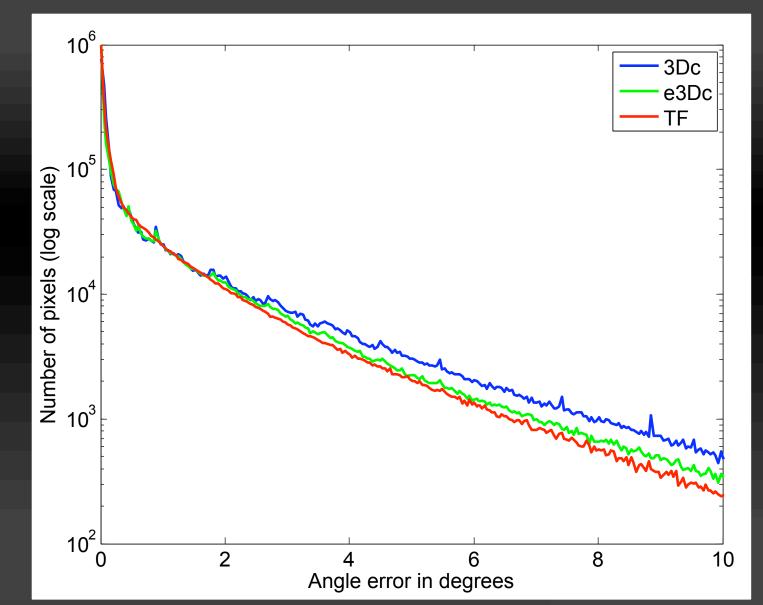
- Tight Frame Compression
- Evaluation



Evaluation


- PSNR
- Max error
 - A few bad normals "cracks" a smooth surface
- Angular deviation [Abate 05]
 - Angle between compressed and original normal
 - Motivation: Even a small error in the specular reflection is visible
 - Presented as a histogram


Test Images

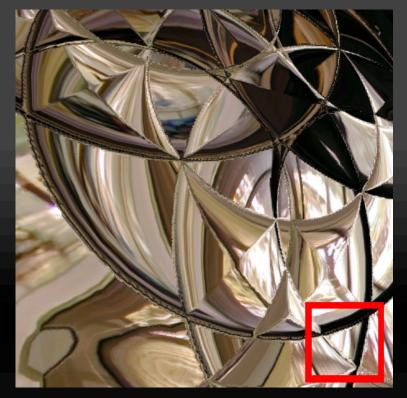

PSNR

Max angular deviation

Error distribution

False Color

3Dc


e3Dc

Tight Frame

Rendered Quality

SSIM: structural similarity image metric

Original	3Dc	e3Dc	Tight Frame
100 %	93.3	95.7	96.3%

Pros & Cons

Increased hardware cost

- Twice the number of "multiply and divide" units compared to e3Dc, but still lightweight
- Unlike e3Dc, there is no backwardcompatibility with 3Dc
 - The format cannot be used for encoding two 1D signals
 - Not depending on 3Dc patent
- More robust results!

Conclusions

• Higher quality than 3Dc

- Still at 8 bits per texels
- More flexibility with OBB, VPD and diff-mode

• Rather modest HW extensions

• API support?

• Potential candidate for OpenGL ES?

Thank you!

http://graphics.cs.lth.se

