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Shadows

Shadows are important
aid spatial reasoning
enhance realism
can be used for dramatic effect

High quality shadows for
real-time applications
remains a challenge
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Shadow approaches

Raytracing [Whitted 1980]

not yet real-time for complex, dynamic
scenes at high resolutions

Shadow volumes [Crow 1977]
can exhibit poor performance on complex
scenes
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LightEye

Shadow maps [Williams 1978]
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Logarithmic perspective shadow
maps (LogPSMs)   [Lloyd et al. 2007]

Standard shadow map LogPSM
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Logarithmic perspective shadow
maps (LogPSMs)   [Lloyd et al. 2007]

Standard shadow map LogPSM
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Goal

linear rasterization logarithmic rasterization

Perform logarithmic rasterization at rates comparable
to linear rasterization
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Outline

Background
Handling aliasing error
LogPSMs

Hardware enhancements
Conclusion and Future work
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High resolution shadow maps

Requires more
bandwidth

Decreases shadow map
rendering performance

Requires more storage
Increased contention for
limited GPU memory

Decreased cache
coherence

Decreases image rendering
performance

Poor shadow
map query
locality
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Sample at shadow map
query positions

No aliasing

Uses irregular data
structures

requires fundamental changes
to graphics hardware
[Johnson et al. 2005]

Irregular z-buffer [Aila and Laine 2004;
Johnson et al. 2004]
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Adaptive partitioning

Adaptive shadow maps
[Fernando et al. 2001]

Queried virtual shadow maps
[Geigl and Wimmer 2007]

Fitted virtual shadow maps
[Geigl and Wimmer 2007]

Resolution matched shadow
maps
[Lefohn et al. 2007]

Multiple shadow frusta
[Forsyth 2006]
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Adaptive partitioning

Requires scene analysis
Uses many rendering
passes
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Scene-independent schemes

Match spacing
between eye samples
Faster than adaptive
partitioning

no scene analysis
few render passes

eye sample spacing
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Cascaded shadow
maps [Engel 2007]

Parallel split shadow
maps [Zhang et al. 2006]

Cascade shadow maps
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Projective warping

Perspective shadow maps
(PSMs) [Stamminger and
Drettakis 2002]

Light-space perspective
shadow maps (LiSPSMs)
[Wimmer et al. 2004]

Trapezoidal shadow maps
(TSMs)
[Martin and Tan 2004]

Lixel for every pixel
[Chong and Gortler 2004]
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Projective warping

Not necessarily the best spacing
distribution

PSM LiSPSM
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Logarithmic+perspective
parameterization

Perspective
projection

Logarithmic
transform

Resolution
redistribution
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Logarithmic +
perspective

Perspective

Uniform

Size of the shadow map*
required to remove aliasing error

(ignoring surface orientation)

Bandwidth/storage savings

- near and far plane distances of view frustum

*shadow map texels / image pixels
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Single shadow map LogPSM

LogPSMs have
lower maximum error
more uniform error

Image resolution: 5122

Shadow map resolution: 10242

f/n = 300
Grid lines for every 10 shadow map texels
Color coding for maximum texel extent in
image

LiSPSM

LogPSMLiSPSM

LogPSM

>107.753.251111
3.257.7510< >107.753.251111
3.257.7510<
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Comparisons
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More details

Logarithmic perspective
shadow maps

UNC TR07-005

http://gamma.cs.unc.edu/logpsm
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Outline

Background
Hardware enhancements

rasterization to nonuniform grid
generalized polygon offset
depth compression

Conclusion and Future work
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Graphics pipeline

fragment processor

vertex processor

       rasterizer

alpha, stencil,
& depth tests

blending

clipping

memory
interface

depth
compression

color
compression

setup
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Rasterization

Coverage determination
coarse stage – compute covered tiles
fine stage – compute covered pixels

Attribute interpolation
interpolate from vertices
depth, color, texture coordinates, etc.
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Signs used to
compute coverage
Water-tight
rasterization

Use fixed-point
fixed-point “snaps”
sample locations to an
underlying uniform grid

Edge equations

+++ -+++-+

++-
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Attribute interpolation

Same form as edge equations:
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Logarithmic rasterization

light space linear shadow map
space

warped shadow map
space

Linear rasterization with nonuniform grid locations.

y

x

y'

x
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Edge and interpolation
equations

Monotonic
existing tile traversal algorithms still work
optimizations like z-min/z-max culling still work
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Coverage determination
for a tile

Full parallel
implementation

Full evaluation
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Per-triangle
 constants

Coverage determination
for a tile

Incremental in x

Full evaluation
Incremental x

1 2
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Generalized polygon offset

texel
width

 - depth slope

 - smallest representable
   depth difference

constant

light
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Generalized polygon offset

texel
width

 - depth slope

 - smallest representable
   depth difference

constant

not constant

light
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Generalized polygon offset

Do max per pixel
Split polygon
Interpolate max at end points
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Depth compression

Important for reducing memory bandwidth
requirements
Exploits planarity of depth values
Depth compression survey
[Hasselgren and Möller 2006]

depth
compressor

tile

tile table

store compressed

ye
s

store uncompressedno

fits in bit
budget?
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Depth compression - Standard
compressed
untouched
clamped

Linear depth compression Our depth compression

Resolution:
512x512
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Depth compression - LiSPSM
compressed
untouched
clamped

Linear depth compression Our depth compression

Resolution:
512x512
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Depth compression - LogPSM
compressed
untouched
clamped

Linear depth compression Our depth compression

Resolution:
512x512
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Depth compression – LogPSM
Higher resolution

compressed
untouched
clamped

Linear depth compression Our depth compression

low curvature

Resolution:
1024x1024
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Differential
encoding

Anchor encoding 128-bit allocation
table

Our compression scheme
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Test scenes

Town model
• 58K triangles

Robots model
• 95K triangles 

Power plant
• 13M triangles 
• 2M rendered
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Compression methods tested

Anchor encoding
[Van Dyke and Margeson 2005]

Differential differential pulse
code modulation (DDPCM)
[DeRoo et al. 2002]

Plane and offset
[Ornstein et al. 2005]

Hasselgren and Möller [2006]
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Compression results
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view direction
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Summary of hardware
enhancements

Apply F(y) to vertices in setup
log and multiply-add operations

Evaluators for G(y’)
exponential and multiply-add operations

Possible increase in bit width for
rasterizer
Generalized polygon offset
New depth compression unit

can be used for both linear and logarithmic
rasterization
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Feasibility

Leverages existing designs
Trades computation for bandwidth
Aligns well with current hardware
trends

computation cheap
bandwidth expensive
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Conclusion

Shadow maps
Handling errors requires high resolution

Logarithmic rasterization
significant savings in bandwidth and storage

Incremental hardware enhancements
Rasterization to nonuniform grid
Generalized polygon offset
Depth compression

Feasible
leverages existing designs
aligns well with hardware trends
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Future work

Prototype and more detailed analysis
Greater generalization for the
rasterizer

reflections, refraction, caustics,
multi-perspective rendering
[Hou et al. 2006; Liu et al. 2007]

paraboloid shadow maps for omnidirectional light
sources [Brabec et al. 2002]

programmable rasterizer?
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