
University of California, Davis

Distributed Texture Memory
in a Multi-GPU Environment

Adam Moerschell

John Owens

GPU 1

Introduction

Texture
Memory

GPU 0

Texture
Memory

CPU

GPU 1

Introduction

Texture
Memory

GPU 0

Texture
Memory

CPU

Introduction

Trends
• GPU is now a programmable parallel processor

• More general purpose computation

• Multi-CPU/Multi-Core => Multi-GPU

Applications

• Large Data Set Visualization

• High End Interactive Graphics

• Physical Simulation

• General Purpose Computation

Background

Current Multi-GPU Graphics Systems

• Crossfire and SLI

 Increased Triangle Rate

 Increased Pixel Rate

x Texture Memory does not scale as more GPUs are added

• Chromium

 Provides scalability

x Only works on streams of graphics commands

• No access to stages of graphics pipeline not exposed to
programmer

Implementation

Goal: Distributing Texture Memory

• Scalable to Many GPUs

• Single Node

• Clustered Nodes

• Globally Accessible

• All memory blocks visible to all GPUs

• System Transparent to Programmer

• No need to manage memory by hand

Implementation

Goal: Distributing Texture Memory
• Our goal is to show important mechanisms

for accomplishing this

• Performance is secondary

• We provide insights as to what can change
to help make this system work better

Implementation

Memory System

• Based on Distributed Shared Memory (DSM)

• Scalable

• Creates a global memory space for all GPUs to operate in

• Able to create a definable and enforceable memory
consistency model

• Sequential Consistency Model

• Texture accesses occur in program order

• Writes complete in order issued

• Reads only complete after previous writes complete

Implementation

Data Structures

• Global + Distributed + Consistent

• Need some way to keep track of memory

• Directory

• Stored in CPU memory

• Holds state information for each memory block

• Keeps a copy of the most recent version of a block

• Scalable in a multi-node environment

• Works “under the hood” -> transparent

Implementation

Data Structures
• Memory Block

• Textures are too large

• Texels are too small

• Page - contiguous block of texels from a single texture

• GPU Structures
• Page Table and Physical Memory textures

• Page Table texture stores validity and pointers to pages in
the Physical Memory texture

• Physical Memory texture stores page data

• Texel access is an indirect lookup via the page table

Implementation

Texture Load

A texture is broken into pages as it is loaded into memory.

Implementation

Texture Load

Directory Entry
// Global Address
page_num = 0x01;

// Dirty bit
dirty = false;

// Valid bit for each GPU
valid[num_gpus] = false;

// Pointer to data in CPU memory
*data;

A directory entry is created for each page.
The entry contains important state information.

Implementation

Texture Load

Directory Entry
// Global Address
page_num = 0x01;

// Dirty bit
dirty = false;

// Valid bit for each GPU
valid[num_gpus] = false;

// Pointer to data in CPU memory
*data;

*ptrF…FF0x0F

………………

*ptrF…FF0x01

*ptrF…FF0x00

dataV[N-1]…V[0]DPN

Directory

The directory resides in CPU memory, and keeps track of the
state of every page in the system.

Implementation

GPU Page Table Lookup
Page Table Texture Physical Memory Texture

Page
Table
Entry

R G B

Implementation
Executing GL Code
• Pages loaded to the GPU PhysMem on demand

• Must take care at any texture access in a shader

• Break texture access into two passes

Original Fragment Program
float4 main(float2 tc : TEXCOORD0,
 uniform sampler2D texture)
{
 …
 float4 data=tex2D(tc,texture);
 …
}

Fragment Program 1 (Pass 1)
• Determine if data at tc is

 resident to texture memory
• render requests to buffer

Fragment Program 2 (Pass 2)
• Dependent texture read
 page table  physical memory

CPU Handler
• Read back request buffer
• Process requests and transfer
 data to GPU’s texture memory
• Update page table

Threading System

Threading System

• Windowing System Event Loop

• Captures User and Windowing System Input

Threading System

• Event Handler

• Responds to events and executes callbacks

Threading System

• OpenGL Thread

• Owns Graphics Context and executes all GL commands

Threading System

• Memory Manager

• Manages Directory and Memory Consistency

Texture Read

FFF0x0F

FFF0x0E

FFF0x0D

FFF0x0C

FFF0x0B

FFF0x0A

FFF0x09

FFF0x08

FFF0x07

FFF0x06

FFF0x05

FFF0x04

FFF0x03

FFF0x02

FFF0x01

FFF0x00

V[1]V[0]DADDR

Dual GPU Configuration
• Goal: draw texture mapped quad to screen
• Only parts of texture needed on each card
• Currently no data loaded into texture memory

GPU 0

GPU 1

Texture Read

FFF0x0F

FFF0x0E

FFF0x0D

FFF0x0C

FFF0x0B

FFF0x0A

FFF0x09

FFF0x08

FFF0x07

FFF0x06

FFF0x05

FFF0x04

FFF0x03

FFF0x02

FFF0x01

FFF0x00

V[1]V[0]DADDR

Event Handlers
• Receive screen refresh event
• Initiate First Pass
• Send Geometry and texture coordinates to
 their OpenGL Thread

GPU 0

GPU 1(0, 0) (smax, 0)

(smax, tmax)(0, tmax)

Texture Read

FFF0x0F

FFF0x0E

FFF0x0D

FFF0x0C

FFF0x0B

FFF0x0A

FFF0x09

FFF0x08

FFF0x07

FFF0x06

FFF0x05

FFF0x04

FFF0x03

FFF0x02

FFF0x01

FFF0x00

V[1]V[0]DADDR

OpenGL Threads
• Receive Geometry and Tex Coords
• Look up required pages in page table and
 output requests for pages that are not local
• Results are read back and sent to Event Handler

GPU 0

GPU 1

Texture Read

FFF0x0F

FFF0x0E

FFF0x0D

FFF0x0C

FFF0x0B

FFF0x0A

FFF0x09

FFF0x08

FFF0x07

FFF0x06

FFF0x05

FFF0x04

FFF0x03

FFF0x02

FFF0x01

FFF0x00

V[1]V[0]DADDR

Event Handlers
• Receive Page Requests for invalid pages
• Request pages from Memory Manager

GPU 0

GPU 1

Texture Read

FFF0x0F

FFF0x0E

FFF0x0D

FFF0x0C

FFF0x0B

FFF0x0A

FFF0x09

FFF0x08

FFF0x07

FFF0x06

FFF0x05

FFF0x04

FFF0x03

FFF0x02

FFF0x01

FFF0x00

V[1]V[0]DADDR

Memory Manager
• Receives first request
• Locates requested pages
• Sends pages to OGL Thread

GPU 0

GPU 1

Texture Read

FFF0x0F

FFF0x0E

FFF0x0D

FFF0x0C

FFF0x0B

FFF0x0A

FFF0x09

FFF0x08

FFF0x07

FFF0x06

FFF0x05

FFF0x04

FFF0x03

FFF0x02

FFF0x01

FFF0x00

V[1]V[0]DADDR

OpenGL Thread 0
• Places Pages into Physical Memory Texture
• Updates Page Table Entries
• Replies Success to Memory Manager

GPU 0

GPU 1

Texture Read

FFF0x0F

FFF0x0E

FFF0x0D

FFF0x0C

FFF0x0B

FFF0x0A

FFF0x09

FFF0x08

FTF0x07

FTF0x06

FTF0x05

FTF0x04

FTF0x03

FTF0x02

FTF0x01

FTF0x00

V[1]V[0]DADDR

Memory Manager
• Updates Directory Entries
• Tells Event Handler it is okay to proceed

GPU 0

GPU 1

Texture Read

TFF0x0F

TFF0x0E

TFF0x0D

TFF0x0C

TFF0x0B

TFF0x0A

TFF0x09

TFF0x08

FTF0x07

FTF0x06

FTF0x05

FTF0x04

FTF0x03

FTF0x02

FTF0x01

FTF0x00

V[1]V[0]DADDR

Memory Manager
• Receives second request
• Same Procedure for GPU 1

GPU 0

GPU 1

Texture Read

TFF0x0F

TFF0x0E

TFF0x0D

TFF0x0C

TFF0x0B

TFF0x0A

TFF0x09

TFF0x08

FTF0x07

FTF0x06

FTF0x05

FTF0x04

FTF0x03

FTF0x02

FTF0x01

FTF0x00

V[1]V[0]DADDR

Event Handlers
• Initiate Second Pass

•All necessary texture data is local to GPU
• Re-send Geometry and texture coordinates to
 their OpenGL Thread

GPU 0

GPU 1(0, 0) (smax, 0)

(smax, tmax)(0, tmax)

Texture Read

TFF0x0F

TFF0x0E

TFF0x0D

TFF0x0C

TFF0x0B

TFF0x0A

TFF0x09

TFF0x08

FTF0x07

FTF0x06

FTF0x05

FTF0x04

FTF0x03

FTF0x02

FTF0x01

FTF0x00

V[1]V[0]DADDR

OpenGL Threads
• Receive Geometry and Tex Coords
• Look up required pages in page table and
 physical memory
• Output final pixel value to framebuffer
• Reply operation
 complete to Event
 Handler

GPU 0

GPU 1

Programmer’s View

• Memory is global

• Only worry about Texture ID and S,T coords

• Independent command stream to each GPU

• Partition image space

• Currently shaders are rewritten by hand

• Could be easily automated using Mio-like
technology [Riffel et al. 2004]

Texture Write

Original Texture Modified Texture

Goal: Render textured triangle into original texture

Texture Write

Pass 1: Check read dependencies in the same manner
as a texture read. Load required texture
pages from directory to GPU texture memory.

Texture Write

Pass 2:
• Render textured triangle to temporary buffer
• Request exclusive copy of modified pages
• Create write mask

Pages to be written Write Mask

Texture Write

Pass 3: Copy modified pages into physical
memory using write mask

+ +

Texture Write

Stage 3: Copy modified pages into physical
memory using write mask

+ +

Texture Write

Stage 3: Copy modified pages into physical
memory using write mask

+ +

Texture Write

Stage 3: Copy modified pages into physical
memory using write mask

+ +

Texture Write

Stage 3: Copy modified pages into physical
memory using write mask

+ +

Texture Write

Stage 3: Copy modified pages into physical
memory using write mask

+ +

Applications

• GPGPU - Boiling Application

• Game Trace - GL Quake

Limitations

• One Fragment per Pixel

• Can only receive one fragment’s texel requests

• Example: Blending two fragment’s requests
makes no sense

• Solution: F-Buffer

• Would allow each pixel to generate requests
from every contributing fragment

Limitations

• Mipmapping

• Cannot use hardware mipmapping

• Mipmapping across pages makes no sense

• Do 8 lookups by hand - inefficient

• Solutions

1. Add border and mip-pyramid to each page

2. Expose mipmapping hardware to programmer

Future Work

• Eviction Strategies

• Threading to minimize GPU idle time

• Optimizing for case when all textures local

• Advanced directory designs

Conclusion

• Goals

• Scalable

• Globally Addressable

• Programmer Transparent

• Mechanisms

• Limitations

Acknowledgements

Aaron Lefohn, Shubho Sengupta - UC Davis

Pat McCormick, Jeff Inman - LANL

Eric Demers, Bob Drebin - ATI

Henry Moreton - NVIDIA

Mike Houston - Stanford University

