
A Performance-Oriented Data
Parallel Virtual Machine for GPUs

 Mark Peercy Mark Segal Derek Gerstmann

ATI Research, Inc.

Problem Statement

“...significant barriers still exist for the developer who wishes to
use the inexpensive power of commodity graphics hardware,
whether for in-game simulation of physics or for
conventional computational science. These chips are
designed for and driven by video game development; the
programming model is unusual, the programming
environment is tightly constrained, and the underlying
architectures are largely secret. The GPU developer must be
an expert in computer graphics and its computational idioms
to make effective use of the hardware, and still pitfalls
abound...”

•Course Description, SIGGRAPH 2005
GPGPU Course

GPU as Compute Device

Interest for using GPU for compute

• Physical Simulations

• Linear Algebra

• Convolution & FFT

• Sorting & Searching

• Final Frame Rendering

• Cutting Edge Real-Time Graphics

These applications exercise a small fraction of
features available in graphics hardware...

Current GPU Abstraction

Rendering Pipeline (OpenGL + Direct3D)

• Great for (existing) real-time graphics and games

• Cumbersome for other types of computation

• Graphics-centric programming model

• Forced to manage graphics state

• Implemented through graphics driver

• Mechanism designed to hide hardware

• Imposes critical policy decisions

• How / when / where data resides

• Updates + optimizations driven by games...

A Data Parallel Approach

The Data Parallel Virtual Machine (DPVM)

• Expose relevant parts of the GPU as they really are

• Command Processor

• Data Parallel Processors

• Memory Controller

• Hide all other graphics-specific features

• Provide direct communication to device

• Eliminate driver implemented procedural API

• Push policy decisions back to application

• Remove constraints imposed by graphics APIs

The Data Parallel VM

Command Processor

• Abstracts communication from architecture
• Commands are architecturally independent

• Accepts command buffers (CBs) in memory

• Interprets commands in buffer

• Distributes work to processor array

• Application manages command buffers
• Application fills and submits CBs

• Application handles synchronization

Command Processor

Complete list of Data Parallel Commands

Data Parallel Processors

• Performs floating-point computations

• Accepts binary executable (ELF)

• Formal application binary interface (ABI)

• Uses native instruction set architecture (ISA)

• ISA is architecturally dependent

• Only ISA needs to be updated for new architectures
(ie. recompile from high-level language)

• Application submits compiled binary

• ISA goes straight to the hardware

• Executable is immune to driver changes

Memory Controller

• Services GPU requests to read/write memory

• Exports graphics memory directly

• GPU memory (accessible by GPU only)

• Host memory (accessible by GPU + CPU)

• Application manages memory resources

• Specifies locations and formats

• Can cast between formats w/o copying data

• Controls data submission + cache invalidation

ATI Close-to-the-Metal (CTM)

Implementation (ATI x1k DPVM)

• Radeon x1k architecture (eg x1300 - x1950)

• Exposes hardware resources (DX9 SM3.0+)

• Native ISA (ASM text + binary formats)

• Runtime library

• Low-level driver components

• Support libraries

• Assembler + Disassembler

• Command buffer packer

ATI Close-to-the-Metal (CTM)

Processor Resources (Radeon x1k)

ATI Close-to-the-Metal (CTM)

Processor Resources (Radeon x1k)

SCATTER!

ATI Close-to-the-Metal (CTM)

Additional Features (beyond SM3.0)

• Scatter (output float1 values to arbitrary locations)

• Read + Modify + Write in a single program

• Fast tiled memory formats

• Fetch4 (retrieve x4 float1 in a single clock)

• ABI w/native ISA allows hand-tuned optimizations

• Ability to read/write directly to/from host memory

• Avoid non-IEEE floating-point optimizations

• Application dictates granularity of CB submission

• Save binary CB offline and load at runtime

CTM Usage Example

Open a Connection and Allocate Resources

CTM Usage Example (cont.)

Fill Memory Buffers with Application Data

CTM Usage Example (cont.)

Create a Command Buffer and Populate It

CTM Usage Example (cont.)

Submit Command Buffer and Process Results

CTM HLSL->ISA Example
HLSL

PS3

ISA

CTM Example Applications

Runtime comparison (Graphics API vs CTM)

Measured on a single Radeon x1900

Conclusion

Benefits of the Data Parallel Approach

• Straight-forward programming model

• Allows hand-tuned optimizations

• Exposes actual hardware device

• Direct control over memory + processors

• Application binary interface + native ISA

• Application is responsible for all policy decisions

• Allows consistent performance for compute

Future Work

Other things to explore...

• Open area for tool development

• Low-level profilers + debuggers

• New opportunities for compiler research

• ISA provides new target for code generation

• Support for new high-level languages

• Non-graphics based optimizations

• Resource management for data parallel apps

• Extensions to expose more graphics functionality

Special Thanks...

ATI Research, Inc.

• Mark Peercy, Mark Segal, Alex Chalflin, Alpana
Kaulgud, Raja Kodori, and everyone else...

Stanford University

• Mike Houston, Daniel Horn

Graphics Hardware Workshop

• Hot3D Program Chairs

QUESTIONS?

For more information contact:

researcher@ati.com

