
Comparing Reyes and OpenGL
on a Stream Architecture

Comparing Reyes and OpenGL
on a Stream Architecture

John D. Owens Brucek KhailanyJohn D. Owens Brucek Khailany
Brian Towles Brian Towles William J. DallyWilliam J. Dally

Computer Systems LaboratoryComputer Systems Laboratory
Stanford UniversityStanford University

MotivationMotivation

• Special-purpose processors: great performance
• General-purpose processors: great flexibility
• As graphics architects, how do we get both?

Frame from A Bug’s Life
© Pixar Animation Studios, 2000

Frame from Quake III Arena
© id Software, 1999

Frame from 3DMark2001
© madonion.com, 2001

OpenGL and ReyesOpenGL and Reyes

Frame from Monsters Inc.
© Pixar Animation Studios, 2001

•• OpenGL: Prevalent in realOpenGL: Prevalent in real--
time graphics systems todaytime graphics systems today
• Designed for high-performance

real-time implementations

•• Reyes: Architecture to Reyes: Architecture to
implement RenderManimplement RenderMan
• Designed for high-quality, non-real-

time rendering

•• Streaming framework for Streaming framework for
rendering enables rendering enables
implementation and implementation and
comparison of both pipelinescomparison of both pipelines

SummarySummary

•• Rendering in streaming framework provides Rendering in streaming framework provides
flexibility and performanceflexibility and performance

•• OpenGL and Reyes are both streaming appsOpenGL and Reyes are both streaming apps
• Focus of paper: comparison between two

•• Contributions of paper:Contributions of paper:
• Streaming framework for rendering

•Enables multiple pipelines / hybrid pipelines

• Algorithms for streaming implementation

• Quantitative comparison between OpenGL and
Reyes

Previous WorkPrevious Work

•• OpenGL: Segal and Akeley ’99OpenGL: Segal and Akeley ’99
•• Reyes: Cook/Carpenter/Catmull ’87Reyes: Cook/Carpenter/Catmull ’87

• RenderMan: Upstill ’90, Apodaca and Gritz ’00

•• Programmability and rendering:Programmability and rendering:
• Shade trees: Cook ’84

• Programmable pipeline: Olano ’98 (dissertation)

• RenderMan on OpenGL: Peercy et al. ’00

• OpenGL with streams: Owens et al. ’00

• Real-Time Shading Language: Proudfoot et al. ’01

• Smash: McCool ’01

The Stream Programming ModelThe Stream Programming Model
•• StreamsStreams

• Ordered sets of data elements of
the same datatype

• Datatype can be compound

•• KernelsKernels
• Perform computation

• Inputs/outputs are streams

• Typical operation: apply function to
each element in stream

• Can be chained together

• Expose parallelism

kernel

streamstream

streamstream

Programming Model DetailsProgramming Model Details

Limited control flowLimited control flow
• Goal: Exploit data-level parallelism

• SIMD (single-instruction, multiple-data)

• Requirement: Simple control

• Primary control structure: loop
• No branches

• Conditional streams allow data-dependent operation

Kernels operate only on local dataKernels operate only on local data
• Goal: Fast kernel execution

• Requirement: Data must be close to functional units

• Must structure program to avoid global accesses within kernels
• No pointers, no global arrays within kernels

The Imagine Stream ProcessorThe Imagine Stream Processor

Imagine Stream Processor

Microcontroller

ALU Cluster 7

ALU Cluster 6

ALU Cluster 5

ALU Cluster 4

ALU Cluster 3

ALU Cluster 2

ALU Cluster 1

ALU Cluster 0

Stream
Register File

Stream
Controller

Host
Processor

Streaming
Memory
System

S
D
R
A
M

Host
Interface

Network Interface

Other Imagine
Nodes, I/O

[Khailany et al., IEEE Micro Mar/Apr ’01]

ImplementationImplementation

•• Input stream divided Input stream divided
into “batches”into “batches”

•• Batch loaded from Batch loaded from
memory to SRFmemory to SRF

•• Series of kernels run Series of kernels run
on input batchon input batch

•• Output written back Output written back
to memoryto memory

[Owens et al., Graphics Hardware ’00]

Transform

Memory SRF Clusters

Shader

Z
Buffer

Zcompare

Color
Buffer

z,
color

z

z,
coloroffset

Why Stream Processing?Why Stream Processing?

•• Graphics tasks are stream tasksGraphics tasks are stream tasks
• Exploit parallelism, producer-consumer locality

• Stream hardware is designed to:

•Support lots of computation
•Deliver high data bandwidth

• SIMD nature of Imagine matches OpenGL/DirectX
and Reyes shading models

•• Goal: Design of efficient algorithms for the Goal: Design of efficient algorithms for the
stream model results in efficient stream model results in efficient
implementations in specialimplementations in special--purpose hwpurpose hw

Stream Framework for RenderingStream Framework for Rendering
Application

Command

Per-Surface

Tessellation

Per-Vertex

Primitive Assembly

Per-Primitive

Rasterization

Per-Fragment

Image Composition

Per-Pixel

Display

Per-Texel Texture
Memory

Pixel Ops

Object Space

Image Space

Texture Spaces

FB

From Akeley and Hanrahan, Real-Time Graphics Architectures

OpenGL in Streaming ModelOpenGL in Streaming Model
Application

Command

Per-Surface

Tessellation

Per-Vertex

Primitive Assembly

Per-Primitive

Rasterization

Per-Fragment

Image Composition

Per-Pixel

Display

Vertex Program

Primitive Assembly

Clip/Project

Rasterization

Fragment Program

Image Composition

Reyes in Streaming ModelReyes in Streaming Model
Application

Command

Per-Surface

Tessellation

Per-Vertex

Primitive Assembly

Per-Primitive

Rasterization

Per-Fragment

Image Composition

Per-Pixel

Display

Vertex (Quad) Program

Sample

Image Composition

Subdivision (Dice/Split)

Summary of Pipeline DifferencesSummary of Pipeline Differences

•• Shading and texturingShading and texturing
• OpenGL: 2 shaders, 2 coordinate spaces

• Reyes: Single shader, single coordinate space

•• Sampling vs. rasterizationSampling vs. rasterization
• OpenGL: rasterizes arbitrary-sized triangles

• Reyes: samples bounded-sized quads

•• TessellationTessellation
• OpenGL: tessellates in host or at compile time

• Reyes: tessellates dynamically as part of pipeline

Shading and TexturingShading and Texturing
•• OpenGLOpenGL

• Vertex shading: eye space

• Fragment shading: screen space

• Textures require filtering (mipmapping, 8 samples/access)
• Imagine OpenGL: mipmapped scenes are > 2x slower than point-

sampled

• Factoring advantageous for large triangles, but must support
two shading units

•• ReyesReyes
• Vertex/quad shading: eye space

• Coherent access textures: samples are properly filtered

• Gain ability to shade before pixel coverage calculation:
motion blur, depth of field

Sampling vs. RasterizationSampling vs. Rasterization

•• Sampling quads is simpler than rasterizing Sampling quads is simpler than rasterizing
trianglestriangles
• Quads have bounded size

• Triangles can have arbitrary size

•• Imagine implementations:Imagine implementations:
• 8 Gouraud shaded primitives w/ identical coverage

• Reyes sample: 100 cycles, 548 ops

• OpenGL rasterize: 565 cycles, 2276 ops

•More complex shaders need lots of interpolants

TessellationTessellation

•• OpenGL: compile time, or on hostOpenGL: compile time, or on host
•• Reyes: runtimeReyes: runtime

• Adaptive subdivision

• Catmull-Clark subdivision surfaces

• Goals
•Keep data structure on-chip
•No global knowledge (i.e. binary dicing)
•O(log n) storage for n quads (depth first traversal)

• Most traditional subdivision algorithms inapplicable
•Typically limit subdivision differences between levels

• Biggest problem: Ensuring no holes in surface

Ensuring Hole-Free SubdivisionEnsuring Hole-Free Subdivision

•• Quad on right: Quad on right:
complete, and outputcomplete, and output

•• Quad on left:Quad on left:
must be subdividedmust be subdivided

•• Potential crack?Potential crack?

•• Freeze edges once Freeze edges once
they fall beneath they fall beneath
thresholdthreshold

•• Edges represented as Edges represented as
edge equationsedge equations

PerformancePerformance

•• Reyes scenes order Reyes scenes order
of magnitude slower of magnitude slower
than OpenGL scenesthan OpenGL scenes

•• OpenGL scenes:OpenGL scenes:
• Triangle sizes 2-12

pixels/triangle

•• Why?Why?

Runtime ResultsRuntime Results

•• Avg. of 82% of Reyes runtime in subdivisionAvg. of 82% of Reyes runtime in subdivision
•• Of remainder, about half in shadingOf remainder, about half in shading
•• Subdivision produces many zeroSubdivision produces many zero--frag quadsfrag quads

OpenGLOpenGL Reyes Reyes (no sub)(no sub)ReyesReyes

Reyes: Refining SubdivisionReyes: Refining Subdivision

•• Possible improvementsPossible improvements
• High-level backface culling

• Intelligent splitting (x or y, not both)

• Early quad kill

•• Subdivision spectrum Subdivision spectrum –– adaptive to fixedadaptive to fixed
• Our algorithm: fully adaptive

• Non-adaptive “oracle” subdivision test:

•Subdivision takes 10% of runtime

• Ideal algorithm?

ConclusionsConclusions

•• Streaming is a natural way to describe Streaming is a natural way to describe
programmable pipelineprogrammable pipeline
• Matches pipeline flow

• Exploits concurrency and locality

•• OpenGL and Reyes both fit into streaming OpenGL and Reyes both fit into streaming
frameworkframework
• Framework supports either pipeline, or hybrid

•• Reyes has several algorithmic advantages …Reyes has several algorithmic advantages …
• Bounded size primitives, single shader, coherent

textures, potential for more sophisticated effects …

•• … but subdivision remains a challenge… but subdivision remains a challenge

Thanks to …Thanks to …

•• Stanford Flash Graphics groupStanford Flash Graphics group
•• NVIDIA architecture groupNVIDIA architecture group
•• Kurt Akeley and Pat HanrahanKurt Akeley and Pat Hanrahan
•• Kekoa Proudfoot and Bill MarkKekoa Proudfoot and Bill Mark
•• Matt PharrMatt Pharr
•• Funding agencies: DARPA, Intel Foundation, Funding agencies: DARPA, Intel Foundation,

MARCOMARCO

