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! rfl}_ e

Frame from Quake Il Arena Frame from 3DMark2001 Frame from A Bug’s Life
© id Software, 1999 © madonion.com, 2001 © Pixar Animation Studios, 2000

» Special-purpose processors: great performance
* General-purpose processors: great flexibility
e As graphics architects, how do we get both?




OpenGL and Reyes

e OpenGL: Prevalent in real-
time graphics systems today

e Designed for high-performance
real-time implementations

e Reyes: Architecture to
implement RenderMan

» Designed for high-quality, non-real-
time rendering

e Streaming framework for
rendering enables o Pixar Animation Studior, 2001
implementation and
comparison of both pipelines




Summary

e Rendering in streaming framework provides
flexibility and performance

e OpenGL and Reyes are both streaming apps
* Focus of paper: comparison between two

e Contributions of paper:
e Streaming framework for rendering

e Enables multiple pipelines / hybrid pipelines
* Algorithms for streaming implementation

e Quantitative comparison between OpenGL and
Reyes




Previous Work

e OpenGL: Segal and Akeley 99

e Reyes: Cook/Carpenter/Catmull ’87
e RenderMan: Upstill ’90, Apodaca and Gritz ’00

e Programmability and rendering:
e Shade trees: Cook ’84

e Programmable pipeline: Olano ’98 (dissertation)
 RenderMan on OpenGL.: Peercy et al. 00

e OpenGL with streams: Owens et al. ’00

* Real-Time Shading Language: Proudfoot et al. 01
e Smash: McCool 01




The Stream Programming Model

e Streams

e Ordered sets of data elements of stream
the same datatype

e Datatype can be compound

e Kernels
e Perform computation

e |nputs/outputs are streams

e Typical operation: apply function to

each element in stream —».—».\
 Can be chained together ./a-

e Expose parallelism




Programming Model Details

Limited control flow
e Goal: Exploit data-level parallelism
e SIMD (single-instruction, multiple-data)
e Requirement: Simple control

e Primary control structure: loop
e No branches

e Conditional streams allow data-dependent operation

Kernels operate only on local data
e Goal: Fast kernel execution

e Requirement: Data must be close to functional units

e Must structure program to avoid global accesses within kernels
* No pointers, no global arrays within kernels




The Imagine Stream Processor

Host Other Imagine
Processor Nodes, 1/0

Network Interface
Host Stream
Interface Controller -

Microcontroller

ALU Cluster 7

ALU Cluster 6

ALU Cluster 5

S:X::g;g Stream ALU Cluster 4
System Register File ALU Cluster 3

‘ ALU Cluster 2
ALU Cluster 1

ALU Cluster O

Imagine Stream Processor

[Khailany et al., IEEE Micro Mar/Apr ’01]




Implementation

e Input stream divided S e E—
into “batches” -

e Batch loaded from
memory to SRF

e Series of kernels run
on input batch

e OQutput written back
to memory

[Owens et al., Graphics Hardware ’00]




Why Stream Processing?

e Graphics tasks are stream tasks
* Exploit parallelism, producer-consumer locality

e Stream hardware is desighed to:

e Support lots of computation
e Deliver high data bandwidth

e SIMD nature of Imagine matches OpenGL/DirectX
and Reyes shading models

e Goal: Design of efficient algorithms for the
stream model results in efficient
implementations in special-purpose hw




Stream Framework for Rendering
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OpenGL in Streaming Model
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Reyes in Streaming Model
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Summary of Pipeline Differences

e Shading and texturing
e OpenGL: 2 shaders, 2 coordinate spaces

e Reyes: Single shader, single coordinate space

e Sampling vs. rasterization
e OpenGL: rasterizes arbitrary-sized triangles

* Reyes: samples bounded-sized quads

e Tessellation
e OpenGL: tessellates in host or at compile time

* Reyes: tessellates dynamically as part of pipeline




Shading and Texturing

e OpenGL

e Vertex shading: eye space

* Fragment shading: screen space

e Textures require filtering (mipmapping, 8 samples/access)

* Imagine OpenGL: mipmapped scenes are > 2x slower than point-
sampled

e Factoring advantageous for large triangles, but must support
two shading units

e Reyes
* Vertex/quad shading: eye space

e Coherent access textures: samples are properly filtered

* Gain ability to shade before pixel coverage calculation:
motion blur, depth of field




Sampling vs. Rasterization

e Sampling quads is simpler than rasterizing
triangles

e Quads have bounded size

* Triangles can have arbitrary size

e Imagine implementations:
e 8 Gouraud shaded primitives w/ identical coverage

» Reyes sample: 100 cycles, 548 ops
e OpenGL rasterize: 565 cycles, 2276 ops

* More complex shaders need lots of interpolants




Tessellation

e OpenGL: compile time, or on host

e Reyes: runtime
e Adaptive subdivision

e Catmull-Clark subdivision surfaces

e Goals

e Keep data structure on-chip
* No global knowledge (i.e. binary dicing)
* O(log n) storage for n quads (depth first traversal)

e Most traditional subdivision algorithms inapplicable

e Typically limit subdivision differences between levels
e Biggest problem: Ensuring no holes in surface




Ensuring Hole-Free Subdivision

e Quad on right:
complete, and output

e Quad on left:
must be subdivided

e Potential crack?

* Freeze edges once
they fall beneath
threshold

e Edges represented as
edge equations




Performance

e Reyes scenes order
of magnitude slower
than OpenGL scenes

e OpenGL scenes:

e Triangle sizes 2-12
pixels/triangle

e Why?
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Runtime Results

e Avg. of 82% of Reyes runtime in subdivision
e Of remainder, about half in shading
e Subdivision produces many zero-frag quads
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Reyes: Refining Subdivision

e Possible improvements
» High-level backface culling

* Intelligent splitting (x or y, not both)
e Early quad Kkill

e Subdivision spectrum - adaptive to fixed
e Qur algorithm: fully adaptive

* Non-adaptive “oracle” subdivision test:

e Subdivision takes 10% of runtime

e Ideal algorithm?




Conclusions

e Streaming is a natural way to describe
programmable pipeline

* Matches pipeline flow

e Exploits concurrency and locality

e OpenGL and Reyes both fit into streaming
framework

* Framework supports either pipeline, or hybrid

e Reyes has several algorithmic advantages ...

* Bounded size primitives, single shader, coherent
textures, potential for more sophisticated effects ...

e ... but subdivision remains a challenge
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