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Motivation
• Trend:  Rendering algorithms migrating towards 

hardware(-assisted) implementations
– [Purcell et al. 2002]
– [Schmittler et al. 2002]

We wanted to investigate hardware(-assisted) 
implementation of Photon Mapping [Jensen95]
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kNN Problem
• Need to solve for k-Nearest Neighbours (kNN)
• Used for density estimation in photon mapping
• Want to eventually integrate with GPU-based 

rendering
Migrate kNN onto hardware-assisted platform
– Adapting algorithms and data structures
– Parallelization
– Approximate kNN?
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Applications of kNN
• kNN has many other applications, such as:

– Procedural texture generation [Worley96]
– Direct ray tracing of point-based objects 

[Zwicker et al. 2001]
– Surface reconstruction
– Sparse data interpolation
– Collision detection



Block Hashing 6

Hashing-Based AkNN
• Why hashing?

– Hash function can be evaluated in constant time
– Eliminates multi-level, serially-dependent memory 

accesses

Amenable to fine-scale parallelism and pipelined 
memory
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• Want hash functions that preserve spatial 
neighbourhoods
– Points close to each other in domain space will be 

close together in hash space
– Points in the same hash bucket as query point are 

close to query point in domain space
– Good candidates for k-nearest neighbour search

Hashing-Based AkNN
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Locality Sensitive Hashing
• Gionis, Indyk, and Motwani, 

Similarity Search in High Dimensions via Hashing,
Proc. VLDB’99
– Hash function partitions domain space
– Assigns one hash value per partition

All points falling into the same partition will receive 
the same hash value
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Mathematically…
• Let T = {ti | 0 ≤ i ≤ P } be a monotonically 

increasing sequence of thresholds
• Define hash function to be

hT(t) = i, for ti ≤ i ≤ ti+1
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Multiple Hash Functions
• Each hash bucket stores a subset of the local 

neighbourhood
• Multiple hash tables are needed for retrieving a 

complete neighbourhood
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Higher Dimensions
• Multidimensional points are handled by using 

one hash function per dimension



Block Hashing 12

Higher Dimensions
• Together, hash functions partition space into 

variable-sized rectangular cells
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Higher Dimensions
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Block Hashing Essentials
• Photons are grouped into spatially-coherent 

memory blocks
• Entire blocks are inserted into the hash tables
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Why Blocks of Photons?
• More desirable to insert blocks of photons into 

the hash table (instead of individual photons)
– Fewer references needed per hash table bucket
– Fewer items to compare when merging results from 

multiple hash tables during query
– Photon records are accessed once per query
– Memory block-oriented anyways
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Block-Oriented Memory Model
• Memory access is via burst transfer

– Reading any part of a fixed-sized memory block 
implies the access to the rest of this block is virtually 
zero-cost

• 256-byte chosen as size of photon blocks
– Photons are 24-bytes
– X = 10 photons fit in each block
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Block Hashing
• Preprocessing: before rendering

– Organize photons into blocks
– Create hash tables
– Insert blocks into hash tables

• Query phase: during rendering
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Organize Photon Blocks
• Want to sort photons by spatial location

– Hilbert curve generates 1D key from photon location
– Insert photon records into B+ tree 

• Leaf nodes of B+ tree becomes photon blocks
• Compact leaf nodes to minimize blocks required
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Create Hash Tables
• Based on LSH:

– L hash tables
– Each hash table has three hash functions
– Each function has P thresholds
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Create Hash Tables
• Generate thresholds adaptively

– Create one photon-position histogram per dimension
– Integrate → cumulative distribution function (cdf)
– Invert cdf, take stochastic samples to get thresholds
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Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket
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Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket

– B references to photon blocks
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Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket

– B references to photon blocks
– flags 
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Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket

– B references to photon blocks
– flags 
– a priority value
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Insert Photon Blocks
• For each photon and each hash table:

– Create hash key using 3D position of photon
– Insert entire photon block into hash table using key

• Strategies to deal with bucket overflow



Block Hashing 26

Insert Photon Blocks
• Each bucket refers to entire blocks with at least 

one photon that hashed into the bucket
– Bucket also responsible for all photons in blocks it 

refers to
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Block Hashing
• Preprocessing: before rendering

– Organizing photons into blocks
– Creating the hash tables
– Inserting blocks into hash tables

• Query phase: during rendering
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Querying
• Query is delegated to each hash table in parallel
• Each hash table returns all blocks contained in 

bucket that matched the query
• Set of unique blocks contain candidate set of 

photons
– Each block contains a disjoint set of photons
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Querying
• Each query yields L buckets, each bucket gives 

B photon blocks
• Each query retrieves at most BL blocks
• Can trade accuracy for speed:

– User defined variable A, determines # blocks 
eventually included in candidate search

– Examines at most Ak photons → Ak/X blocks
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Querying
• Which photon blocks to examine first?
• Assign “quality measure” Q to every bucket in 

each hash table
– Q = B - #blocks_inserted - #overflows

• Sort buckets by their “priority” |Q|
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Parameter Values
• Need to express L, P, and B in terms of N, k and A
• Experiments showed lnN is a good choice for both L

and P
• B is determined by k and A, given by:
• Memory overhead:
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Memory Overhead
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Results
• Visual quality
• Algorithmic accuracy

– False negatives
– Maximum distance dilation
– Average distance dilation
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Results

BH A=8kd-tree

BH A=4BH A=16
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Results
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Results

BH A=4BH A=8BH A=16kd-tree
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Results
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Hardware-Assisted Implementation

Query phase:
(1) Generate hash keys for 3D query position
(2) Find hash buckets that match keys
(3) Merge sets of photons blocks into unique collection
(4) Retrieve photons from blocks
(5) Process photons to find k-nearest to query position
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Hardware-Assisted Implementation

(1) Generate hash keys for 3D query position
(5) Process photons to find k-nearest to query position

• Could be performed with current shader
capabilities

• Loops will reduce shader code redundancy
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Hardware-Assisted Implementation

(2) Find hash buckets that match keys
(4) Retrieve photons from blocks

• Amounts to table look-ups
• Can be implemented as texture-mapping 

operations given proper encoding of data
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Hardware-Assisted Implementation

(3) Merge sets of photons blocks into unique collection

• Difficult to do efficiently without conditionals
• Generating unique collection may reduce size of 

candidate set
• Alternative: Perform calculations on duplicated 

photons anyhow, but ignore their contribution by 
multiplying them by zero
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Future Work
• Approximation dilates radius of bounding 

sphere/disc of nearest neighbours
• Experiment with other density estimators that 

may be less sensitive to such dilation
– Average radius
– Variance of radii
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Future Work
• Hilbert curve encoding 

probably not optimal 
clustering strategy

Investigate alternative 
clustering strategies
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Conclusion
• Block Hashing is an efficient, coherent and 

highly parallelizable approximate k-nearest 
neighbour scheme 

• Suitable for hardware-assisted implementation 
of Photon Mapping
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Thank you
http://www.cgl.uwaterloo.ca/Projects/rendering/

vma@cgl.uwaterloo.ca
mmccool@cgl.uwaterloo.ca


