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Motivation

* Trend: Rendering algorithms migrating towards
hardware(-assisted) implementations

— [Purcell et al. 2002]
— [Schmittler et al. 2002]

» \We wanted to investigate hardware(-assisted)
iImplementation of Photon Mapping [Jensen95]
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KNN Problem

* Need to solve for k-Nearest Neighbours (kNN)
» Used for density estimation in photon mapping

« \Want to eventually integrate with GPU-based
rendering

» Migrate kNN onto hardware-assisted platform
— Adapting algorithms and data structures
— Parallelization
— Approximate KNN?
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Applications of KNN

 KNN has many other applications, such as:
— Procedural texture generation [Worley96]

— Direct ray tracing of point-based objects
[Zwicker et al. 2001]

— Surface reconstruction
— Sparse data interpolation
— Collision detection
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Hashing-Based AKNN

* Why hashing?
— Hash function can be evaluated in constant time

— Eliminates multi-level, serially-dependent memory
accesses

» Amenable to fine-scale parallelism and pipelined
memory
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Hashing-Based AKNN

« Want hash functions that preserve spatial
neighbourhoods

— Points close to each other in domain space will be
close together in hash space

— Points in the same hash bucket as query point are
close to query point in domain space

— Good candidates for k-nearest neighbour search
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Locality Sensitive Hashing

* Gionis, Indyk, and Motwani,

Similarity Search in High Dimensions via Hashing,
Proc. VLDB'99

— Hash function partitions domain space
— Assigns one hash value per partition

» All points falling into the same partition will receive
the same hash value
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Mathematically...
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Multiple Hash Functions

Each hash bucket stores a subset of the local
neighbourhood

Multiple hash tables are needed for retrieving a
complete neighbourhood
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Higher Dimensions

* Multidimensional points are handled by using
one hash function per dimension
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Higher Dimensions

« Together, hash functions partition space into
variable-sized rectangular cells
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Higher Dimensions
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Block Hashing Essentials

* Photons are grouped into spatially-coherent
memory blocks

 Entire blocks are inserted into the hash tables
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Why Blocks of Photons?

* More desirable to insert blocks of photons into
the hash table (instead of individual photons)

— Fewer references needed per hash table bucket

— Fewer items to compare when merging results from
multiple hash tables during query

— Photon records are accessed once per query
— Memory block-oriented anyways
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Block-Oriented Memory Model

 Memory access is via burst transfer

— Reading any part of a fixed-sized memory block
implies the access to the rest of this block is virtually
zero-cost

» 256-byte chosen as size of photon blocks
— Photons are 24-bytes
— X =10 photons fit in each block
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Block Hashing

* Preprocessing: before rendering
— Organize photons into blocks
— Create hash tables
— Insert blocks into hash tables

* Query phase: during rendering
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Organize Photon Blocks

« Want to sort photons by spatial location
— Hilbert curve generates 1D key from photon location
— Insert photon records into B+ tree

* Leaf nodes of B+ tree becomes photon blocks
 Compact leaf nodes to minimize blocks required

a) / = \_ \\s :_ - _: [ndex node

Empty cell in leaf node

Occupied cell in leaf node

b)
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Create Hash Tables

 Based on LSH:
— L hash tables
— Each hash table has three hash functions
— Each function has P thresholds
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Create Hash Tables

* Generate thresholds adaptively
— Create one photon-position histogram per dimension
— Integrate — cumulative distribution function (cdf)
— Invert cdf, take stochastic samples to get thresholds
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Create Hash Tables

* Hash table stored as 1D array in memory
 Each element is a hash bucket
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Create Hash Tables

* Hash table stored as 1D array in memory
 Each element is a hash bucket

— B references to photon blocks

B
2 =S
LS

Priority
\_.?' \' \" \.—"
o o C
cQ o A
|1 LI
YYY v

Block Hashing



Create Hash Tables

* Hash table stored as 1D array in memory

« Each element is a hash bucket

— B references to photon blocks

— flags
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Create Hash Tables

* Hash table stored as 1D array in memory

 Each element is a hash bucket
— B references to photon blocks
— flags

— a priority value
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Insert Photon Blocks

* For each photon and each hash table:
— Create hash key using 3D position of photon
— Insert entire photon block into hash table using key

« Strategies to deal with bucket overflow
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Insert Photon Blocks

 Each bucket refers to entire blocks with at least
one photon that hashed into the bucket

— Bucket also responsible for all photons in blocks it
refers to
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Block Hashing

* Preprocessing: before rendering
— Organizing photons into blocks
— Creating the hash tables
— Inserting blocks into hash tables

* Query phase: during rendering
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Querying

* Query is delegated to each hash table in parallel

« Each hash table returns all blocks contained In
bucket that matched the query

» Set of unique blocks contain candidate set of
photons

— Each block contains a disjoint set of photons
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Querying

« Each query yields L buckets, each bucket gives
B photon blocks

« Each query retrieves at most BL blocks

« Can trade accuracy for speed:

— User defined variable A, determines # blocks
eventually included in candidate search

— Examines at most Ak photons — Ak/X blocks
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Querying

* Which photon blocks to examine first?

« Assign “quality measure” Q to every bucket in
each hash table

— Q = B - #blocks_inserted - #overflows

« Sort buckets by their “priority” |Q|
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Parameter Values

Need to express L, P, and B in terms of N, k and A

Experiments showed InN is a good choice for both L
and P

B is determined by k and A, given by: B > Ak
Memory overhead: X InN
4A—k (InN)’ +12(InN)* +1.6N i (InNY 2

=0
24N N
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Results

* Visual quality
 Algorithmic accuracy
— False negatives

— Maximum distance dilation

— Average distance dilation
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Results
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Results
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Results
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Hardware-Assisted Implementation

Query phase:

(1) Generate hash keys for 3D query position
2) Find hash buckets that match keys
3
4
5) Process photons to find k-nearest to query position

Merge sets of photons blocks into unique collection
Retrieve photons from blocks
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Hardware-Assisted Implementation

(1) Generate hash keys for 3D query position
(5) Process photons to find k-nearest to query position

Could be performed with current shader
capabilities

* Loops will reduce shader code redundancy
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Hardware-Assisted Implementation

(2) Find hash buckets that match keys
(4) Retrieve photons from blocks

Amounts to table look-ups

Can be implemented as texture-mapping
operations given proper encoding of data
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Hardware-Assisted Implementation

(3) Merge sets of photons blocks into unique collection

« Difficult to do efficiently without conditionals

« Generating unique collection may reduce size of
candidate set

 Alternative: Perform calculations on duplicated
photons anyhow, but ignore their contribution by
multiplying them by zero
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Future Work

« Approximation dilates radius of bounding
sphere/disc of nearest neighbours

* Experiment with other density estimators that
may be less sensitive to such dilation

— Average radius
— Variance of radii
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Future Work

* Hilbert curve encoding
probably not optimal
clustering strategy

» Investigate alternative
clustering strategies
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Conclusion

* Block Hashing is an efficient, coherent and
highly parallelizable approximate k-nearest
neighbour scheme

« Suitable for hardware-assisted implementation
of Photon Mapping
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Thank you

http://www.cgl.uwaterloo.ca/Projects/rendering/

vma@cgl.uwaterloo.ca
mmccool@cgl.uwaterloo.ca
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