Low Latency Photon Mapping
with Block Hashing

Vincent C.H. Ma
Michael D. McCool

Menu du Jour

Appetizer: Motivation and Background
First course: Locality Sensitive Hashing

Entree: Block Hashing
Dessert: Results, Future Work, Conclusion

Block Hashing

Motivation

* Trend: Rendering algorithms migrating towards
hardware(-assisted) implementations

— [Purcell et al. 2002]
— [Schmittler et al. 2002]

» \We wanted to investigate hardware(-assisted)
iImplementation of Photon Mapping [Jensen95]

Block Hashing

KNN Problem

* Need to solve for k-Nearest Neighbours (kNN)
» Used for density estimation in photon mapping

« \Want to eventually integrate with GPU-based
rendering

» Migrate kNN onto hardware-assisted platform
— Adapting algorithms and data structures
— Parallelization
— Approximate KNN?

Block Hashing

Applications of KNN

 KNN has many other applications, such as:
— Procedural texture generation [Worley96]

— Direct ray tracing of point-based objects
[Zwicker et al. 2001]

— Surface reconstruction
— Sparse data interpolation
— Collision detection

GRAPHICS C(%{_/‘ Block Hashing

j_/ HARDWARE

Hashing-Based AKNN

* Why hashing?
— Hash function can be evaluated in constant time

— Eliminates multi-level, serially-dependent memory
accesses

» Amenable to fine-scale parallelism and pipelined
memory

GRAPHICS 8(1{:{ Block Hashing

71_/ HARDWARE

Hashing-Based AKNN

« Want hash functions that preserve spatial
neighbourhoods

— Points close to each other in domain space will be
close together in hash space

— Points in the same hash bucket as query point are
close to query point in domain space

— Good candidates for k-nearest neighbour search

Block Hashing

Locality Sensitive Hashing

* Gionis, Indyk, and Motwani,

Similarity Search in High Dimensions via Hashing,
Proc. VLDB'99

— Hash function partitions domain space
— Assigns one hash value per partition

» All points falling into the same partition will receive
the same hash value

GRAPHICS C(%{_/‘ Block Hashing

j_/ HARDWARE

Mathematically...

 LetT={t|0</<P}beamonotonically
increasing sequence of thresholds

 Define hash function to be

hi(t)=1/fort<i<t,,

O
O
O
)
O

Block Hashing

D
)
)

I

Multiple Hash Functions

Each hash bucket stores a subset of the local
neighbourhood

Multiple hash tables are needed for retrieving a
complete neighbourhood

co—etEE—oH1ee oe—6—f—e—6—06 n,
tU t] tz_ t3 t4

oo—e—o—o-O{—00 - —o—o0—00- ny,
TU t| T2 t3 t4

ce—o—o—ofC-H—OC—o—e o—o—066- h,,
tﬂ t] t2 t?s t4

GRAPHICS C'(_f; Block Hashing 10

7/_/ HARDWARE

Higher Dimensions

* Multidimensional points are handled by using
one hash function per dimension

p
= o

Block Hashing

11

Higher Dimensions

« Together, hash functions partition space into
variable-sized rectangular cells

Block Hashing

12

Higher Dimensions

a)
|
, C o O o
[o O 2 D
| O
! + O 4 gt| © o
o - : I
|
| O 0 O 0 O
| O o
|-~~~ ——- - - - - | | B s
b)l = o | c)| O :
| © | | | O
I | O | IL.+ :
I +| W [I
| G © I | '
: O o 0 O : ______ l
| o) o O |
| |

GRAPHICS

7/_/ HARDWARE

Block Hashing

@)
= O
Q
ca+ 0 o
o
O o O 0
Q Q

o Data point
+ Query point

O Matched point

13

Block Hashing Essentials

* Photons are grouped into spatially-coherent
memory blocks

 Entire blocks are inserted into the hash tables

Block Hashing

14

Why Blocks of Photons?

* More desirable to insert blocks of photons into
the hash table (instead of individual photons)

— Fewer references needed per hash table bucket

— Fewer items to compare when merging results from
multiple hash tables during query

— Photon records are accessed once per query
— Memory block-oriented anyways

Block Hashing

15

Block-Oriented Memory Model

 Memory access is via burst transfer

— Reading any part of a fixed-sized memory block
implies the access to the rest of this block is virtually
zero-cost

» 256-byte chosen as size of photon blocks
— Photons are 24-bytes
— X =10 photons fit in each block

Block Hashing

16

Block Hashing

* Preprocessing: before rendering
— Organize photons into blocks
— Create hash tables
— Insert blocks into hash tables

* Query phase: during rendering

Block Hashing

17

Organize Photon Blocks

« Want to sort photons by spatial location
— Hilbert curve generates 1D key from photon location
— Insert photon records into B+ tree

* Leaf nodes of B+ tree becomes photon blocks
 Compact leaf nodes to minimize blocks required

a) / = _ \\s :_ - _: [ndex node

Empty cell in leaf node

Occupied cell in leaf node

b)

GRAPHICS 8(1{:{ Block Hashing 18

71_/ HARDWARE

Create Hash Tables

 Based on LSH:
— L hash tables
— Each hash table has three hash functions
— Each function has P thresholds

Block Hashing

19

Create Hash Tables

* Generate thresholds adaptively
— Create one photon-position histogram per dimension
— Integrate — cumulative distribution function (cdf)
— Invert cdf, take stochastic samples to get thresholds

Block Hashing

20

Create Hash Tables

* Hash table stored as 1D array in memory
 Each element is a hash bucket

-z B ol

Priority
T \.' “' ‘__r
Q0

- |-
- — ..
-

-

Block Hashing

Create Hash Tables

* Hash table stored as 1D array in memory
 Each element is a hash bucket

— B references to photon blocks

B
2 =S
LS

Priority
_.?' \' \" \.—"
o o C
cQ o A
|1 LI
YYY v

Block Hashing

Create Hash Tables

* Hash table stored as 1D array in memory

« Each element is a hash bucket

— B references to photon blocks

— flags

B

AY

Priority
T \r

Cco

-——

Block Hashing

23

Create Hash Tables

* Hash table stored as 1D array in memory

 Each element is a hash bucket
— B references to photon blocks
— flags

— a priority value

L=t B =
- Priority
_?' \' \" \.—"
QO

-
-
-
-—

Block Hashing

Insert Photon Blocks

* For each photon and each hash table:
— Create hash key using 3D position of photon
— Insert entire photon block into hash table using key

« Strategies to deal with bucket overflow

GRAPHICS C(%{_/‘ Block Hashing

j_/ HARDWARE

25

Insert Photon Blocks

 Each bucket refers to entire blocks with at least
one photon that hashed into the bucket

— Bucket also responsible for all photons in blocks it
refers to

Block Hashing

26

Block Hashing

* Preprocessing: before rendering
— Organizing photons into blocks
— Creating the hash tables
— Inserting blocks into hash tables

* Query phase: during rendering

Block Hashing

27

Querying

* Query is delegated to each hash table in parallel

« Each hash table returns all blocks contained In
bucket that matched the query

» Set of unique blocks contain candidate set of
photons

— Each block contains a disjoint set of photons

Block Hashing 28

Querying

« Each query yields L buckets, each bucket gives
B photon blocks

« Each query retrieves at most BL blocks

« Can trade accuracy for speed:

— User defined variable A, determines # blocks
eventually included in candidate search

— Examines at most Ak photons — Ak/X blocks

Block Hashing

AS

Querying

* Which photon blocks to examine first?

« Assign “quality measure” Q to every bucket in
each hash table

— Q = B - #blocks_inserted - #overflows

« Sort buckets by their “priority” |Q|

Block Hashing

30

Parameter Values

Need to express L, P, and B in terms of N, k and A

Experiments showed InN is a good choice for both L
and P

B is determined by k and A, given by: B > Ak
Memory overhead: X InN
4A—k (InN)’ +12(InN)* +1.6N i (InNY 2

=0
24N N

Block Hashing 31

0.3

0.25

0.2

Memory Overhead Ratio

0.1

0.05

GRAPHICS

j_/ HARDWARE

Memory Overhead

0.15

A=16 ——
A=8
A=4 -

200000

400000 600000 800000 1e+06 1.2e+06

Number of Photons

Block Hashing

1.4e+06 1.6e+06 1.8e+06 2e+06

KV

Results

* Visual quality
 Algorithmic accuracy
— False negatives

— Maximum distance dilation

— Average distance dilation

= .—\/ .
GRAPHICS CQ{- Block Hashing

j/ HARDWARE

33

GRAPHICS

~) HARDWARE
o

kd-tree

BH A=16

Results

Block Hashing

BH A=4

34

Results

False— < ' * Max Radius Dilation ——
08 - 1.5 ¢ Avg Radius Dilation -+
S 0 £ 147
D O 7
= PRER
S
204} =
§ =127
4: 02 B 1 Q 11 L
0 P
0 2 4 6 8 1012 14 16 18 20 0 2 4 6 &8 10 12 14 16 18 20
Accuracy Setting (A) Accuracy Setting (A)
L4
0.02 RMS error —<— ol Timing Ratio —<— |
2 0.015 a
H 2
% ocd‘?s 0.8 1
2 001 ex
2 =04t
-_g 0.005 '
2 0.2 1
0 2 4 6 8 1012 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Accuracy Setting (A) Accuracy Setting (A)

Block Hashing

Results

e)

kd-tree BH A=16 BH A=8 BH A=4

Block Hashing

36

Results

False— —— ' * Max Radius Dilation ——
357 Y Avg Radius Dilation ~+
% 37 1o *
- 25 S 1.06
D) ' ~ 1 i
o 2 S
& i = 1.04
g 1.5 _ k=
z | S 102
0.5
0 [
0 2 4 6 8 1012 14 16 18 20 0O 2 4 6 8 1012 14 16 18 20
Accuracy Setting (A) Accuracy Setting (A)
0.05 I RMS error —— | Timing Ratio —<—
Z 004 by |
2 003 g
Z 1206t
L
0 0.02 1 18 oal

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Accuracy Setting (A) Accuracy Setting (A)
crariice Waleh Block Hashing

71_/ HARDWARE

Hardware-Assisted Implementation

Query phase:

(1) Generate hash keys for 3D query position
2) Find hash buckets that match keys
3
4
5) Process photons to find k-nearest to query position

Merge sets of photons blocks into unique collection
Retrieve photons from blocks

(
(
(
(

)
)
)
)

Grapics B m Block Hashing 38

Hardware-Assisted Implementation

(1) Generate hash keys for 3D query position
(5) Process photons to find k-nearest to query position

Could be performed with current shader
capabilities

* Loops will reduce shader code redundancy

Block Hashing 39

Hardware-Assisted Implementation

(2) Find hash buckets that match keys
(4) Retrieve photons from blocks

Amounts to table look-ups

Can be implemented as texture-mapping
operations given proper encoding of data

Block Hashing 40

Hardware-Assisted Implementation

(3) Merge sets of photons blocks into unique collection

« Difficult to do efficiently without conditionals

« Generating unique collection may reduce size of
candidate set

 Alternative: Perform calculations on duplicated
photons anyhow, but ignore their contribution by
multiplying them by zero

Block Hashing 41

Future Work

« Approximation dilates radius of bounding
sphere/disc of nearest neighbours

* Experiment with other density estimators that
may be less sensitive to such dilation

— Average radius
— Variance of radii

Block Hashing

42

Future Work

* Hilbert curve encoding
probably not optimal
clustering strategy

» Investigate alternative
clustering strategies

SR IS &:é;_‘ ~ Block Hashing 43

~ /) HARDWARE
o

Conclusion

* Block Hashing is an efficient, coherent and
highly parallelizable approximate k-nearest
neighbour scheme

« Suitable for hardware-assisted implementation
of Photon Mapping

Block Hashing

44

Thank you

http://www.cgl.uwaterloo.ca/Projects/rendering/

vma@cgl.uwaterloo.ca
mmccool@cgl.uwaterloo.ca

~~ /) HARDWARE
4

GRAPHICS &fif \ Block Hashing

45

