
Low Latency Photon Mapping
with Block Hashing

Vincent C.H. Ma
Michael D. McCool

Computer Graphics Lab
University of Waterloo

Block Hashing 2

Menu du Jour

Results, Future Work, ConclusionDessert:
Block HashingEntrée:
Locality Sensitive Hashing First course:
Motivation and BackgroundAppetizer:

Block Hashing 3

Motivation
• Trend: Rendering algorithms migrating towards

hardware(-assisted) implementations
– [Purcell et al. 2002]
– [Schmittler et al. 2002]

We wanted to investigate hardware(-assisted)
implementation of Photon Mapping [Jensen95]

Block Hashing 4

kNN Problem
• Need to solve for k-Nearest Neighbours (kNN)
• Used for density estimation in photon mapping
• Want to eventually integrate with GPU-based

rendering
Migrate kNN onto hardware-assisted platform
– Adapting algorithms and data structures
– Parallelization
– Approximate kNN?

Block Hashing 5

Applications of kNN
• kNN has many other applications, such as:

– Procedural texture generation [Worley96]
– Direct ray tracing of point-based objects

[Zwicker et al. 2001]
– Surface reconstruction
– Sparse data interpolation
– Collision detection

Block Hashing 6

Hashing-Based AkNN
• Why hashing?

– Hash function can be evaluated in constant time
– Eliminates multi-level, serially-dependent memory

accesses

Amenable to fine-scale parallelism and pipelined
memory

Block Hashing 7

• Want hash functions that preserve spatial
neighbourhoods
– Points close to each other in domain space will be

close together in hash space
– Points in the same hash bucket as query point are

close to query point in domain space
– Good candidates for k-nearest neighbour search

Hashing-Based AkNN

Block Hashing 8

Locality Sensitive Hashing
• Gionis, Indyk, and Motwani,

Similarity Search in High Dimensions via Hashing,
Proc. VLDB’99
– Hash function partitions domain space
– Assigns one hash value per partition

All points falling into the same partition will receive
the same hash value

Block Hashing 9

Mathematically…
• Let T = {ti | 0 ≤ i ≤ P } be a monotonically

increasing sequence of thresholds
• Define hash function to be

hT(t) = i, for ti ≤ i ≤ ti+1

Block Hashing 10

Multiple Hash Functions
• Each hash bucket stores a subset of the local

neighbourhood
• Multiple hash tables are needed for retrieving a

complete neighbourhood

Block Hashing 11

Higher Dimensions
• Multidimensional points are handled by using

one hash function per dimension

Block Hashing 12

Higher Dimensions
• Together, hash functions partition space into

variable-sized rectangular cells

Block Hashing 13

Higher Dimensions

Block Hashing 14

Block Hashing Essentials
• Photons are grouped into spatially-coherent

memory blocks
• Entire blocks are inserted into the hash tables

Block Hashing 15

Why Blocks of Photons?
• More desirable to insert blocks of photons into

the hash table (instead of individual photons)
– Fewer references needed per hash table bucket
– Fewer items to compare when merging results from

multiple hash tables during query
– Photon records are accessed once per query
– Memory block-oriented anyways

Block Hashing 16

Block-Oriented Memory Model
• Memory access is via burst transfer

– Reading any part of a fixed-sized memory block
implies the access to the rest of this block is virtually
zero-cost

• 256-byte chosen as size of photon blocks
– Photons are 24-bytes
– X = 10 photons fit in each block

Block Hashing 17

Block Hashing
• Preprocessing: before rendering

– Organize photons into blocks
– Create hash tables
– Insert blocks into hash tables

• Query phase: during rendering

Block Hashing 18

Organize Photon Blocks
• Want to sort photons by spatial location

– Hilbert curve generates 1D key from photon location
– Insert photon records into B+ tree

• Leaf nodes of B+ tree becomes photon blocks
• Compact leaf nodes to minimize blocks required

Block Hashing 19

Create Hash Tables
• Based on LSH:

– L hash tables
– Each hash table has three hash functions
– Each function has P thresholds

Block Hashing 20

Create Hash Tables
• Generate thresholds adaptively

– Create one photon-position histogram per dimension
– Integrate → cumulative distribution function (cdf)
– Invert cdf, take stochastic samples to get thresholds

Block Hashing 21

Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket

Block Hashing 22

Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket

– B references to photon blocks

Block Hashing 23

Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket

– B references to photon blocks
– flags

Block Hashing 24

Create Hash Tables
• Hash table stored as 1D array in memory
• Each element is a hash bucket

– B references to photon blocks
– flags
– a priority value

Block Hashing 25

Insert Photon Blocks
• For each photon and each hash table:

– Create hash key using 3D position of photon
– Insert entire photon block into hash table using key

• Strategies to deal with bucket overflow

Block Hashing 26

Insert Photon Blocks
• Each bucket refers to entire blocks with at least

one photon that hashed into the bucket
– Bucket also responsible for all photons in blocks it

refers to

Block Hashing 27

Block Hashing
• Preprocessing: before rendering

– Organizing photons into blocks
– Creating the hash tables
– Inserting blocks into hash tables

• Query phase: during rendering

Block Hashing 28

Querying
• Query is delegated to each hash table in parallel
• Each hash table returns all blocks contained in

bucket that matched the query
• Set of unique blocks contain candidate set of

photons
– Each block contains a disjoint set of photons

Block Hashing 29

Querying
• Each query yields L buckets, each bucket gives

B photon blocks
• Each query retrieves at most BL blocks
• Can trade accuracy for speed:

– User defined variable A, determines # blocks
eventually included in candidate search

– Examines at most Ak photons → Ak/X blocks

Block Hashing 30

Querying
• Which photon blocks to examine first?
• Assign “quality measure” Q to every bucket in

each hash table
– Q = B - #blocks_inserted - #overflows

• Sort buckets by their “priority” |Q|

Block Hashing 31

Parameter Values
• Need to express L, P, and B in terms of N, k and A
• Experiments showed lnN is a good choice for both L

and P
• B is determined by k and A, given by:
• Memory overhead:









=

++

N
(lnN)O

24N

1.6N12(lnN)(lnN)
X

Ak4 3
23

lnN X
AkB >

Block Hashing 32

Memory Overhead

Block Hashing 33

Results
• Visual quality
• Algorithmic accuracy

– False negatives
– Maximum distance dilation
– Average distance dilation

Block Hashing 34

Results

BH A=8kd-tree

BH A=4BH A=16

Block Hashing 35

Results

Block Hashing 36

Results

BH A=4BH A=8BH A=16kd-tree

Block Hashing 37

Results

Block Hashing 38

Hardware-Assisted Implementation

Query phase:
(1) Generate hash keys for 3D query position
(2) Find hash buckets that match keys
(3) Merge sets of photons blocks into unique collection
(4) Retrieve photons from blocks
(5) Process photons to find k-nearest to query position

Block Hashing 39

Hardware-Assisted Implementation

(1) Generate hash keys for 3D query position
(5) Process photons to find k-nearest to query position

• Could be performed with current shader
capabilities

• Loops will reduce shader code redundancy

Block Hashing 40

Hardware-Assisted Implementation

(2) Find hash buckets that match keys
(4) Retrieve photons from blocks

• Amounts to table look-ups
• Can be implemented as texture-mapping

operations given proper encoding of data

Block Hashing 41

Hardware-Assisted Implementation

(3) Merge sets of photons blocks into unique collection

• Difficult to do efficiently without conditionals
• Generating unique collection may reduce size of

candidate set
• Alternative: Perform calculations on duplicated

photons anyhow, but ignore their contribution by
multiplying them by zero

Block Hashing 42

Future Work
• Approximation dilates radius of bounding

sphere/disc of nearest neighbours
• Experiment with other density estimators that

may be less sensitive to such dilation
– Average radius
– Variance of radii

Block Hashing 43

Future Work
• Hilbert curve encoding

probably not optimal
clustering strategy

Investigate alternative
clustering strategies

Block Hashing 44

Conclusion
• Block Hashing is an efficient, coherent and

highly parallelizable approximate k-nearest
neighbour scheme

• Suitable for hardware-assisted implementation
of Photon Mapping

Block Hashing 45

Thank you
http://www.cgl.uwaterloo.ca/Projects/rendering/

vma@cgl.uwaterloo.ca
mmccool@cgl.uwaterloo.ca

