Low Latency Photon Mapping with Block Hashing

Vincent C.H. Ma Michael D. McCool Computer Graphics Lab University of Waterloo

Menu du Jour

Appetizer:Motivation and BackgroundFirst course:Locality Sensitive HashingEntrée:Block HashingDessert:Results, Future Work, Conclusion

Motivation

- Trend: Rendering algorithms migrating towards hardware(-assisted) implementations
 - [Purcell et al. 2002]
 - [Schmittler et al. 2002]

We wanted to investigate hardware(-assisted) implementation of Photon Mapping [Jensen95]

kNN Problem

- Need to solve for k-Nearest Neighbours (kNN)
- Used for density estimation in photon mapping
- Want to eventually integrate with GPU-based rendering
- Migrate kNN onto hardware-assisted platform
 - Adapting algorithms and data structures
 - Parallelization
 - Approximate kNN?

Applications of kNN

- kNN has many other applications, such as:
 - Procedural texture generation [Worley96]
 - Direct ray tracing of point-based objects
 [Zwicker et al. 2001]
 - Surface reconstruction
 - Sparse data interpolation
 - Collision detection

Hashing-Based AkNN

- Why hashing?
 - Hash function can be evaluated in constant time
 - Eliminates multi-level, serially-dependent memory accesses
 - Amenable to fine-scale parallelism and pipelined memory

Hashing-Based AkNN

- Want hash functions that preserve spatial neighbourhoods
 - Points close to each other in domain space will be close together in hash space
 - Points in the same hash bucket as query point are close to query point in domain space
 - Good candidates for k-nearest neighbour search

Locality Sensitive Hashing

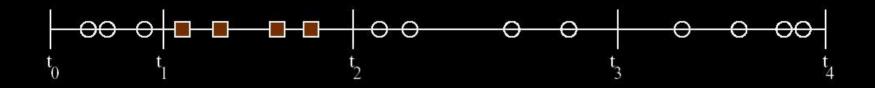
- Gionis, Indyk, and Motwani, Similarity Search in High Dimensions via Hashing, Proc. VLDB'99
 - Hash function partitions domain space
 - Assigns one hash value per partition

All points falling into the same partition will receive the same hash value

Mathematically...

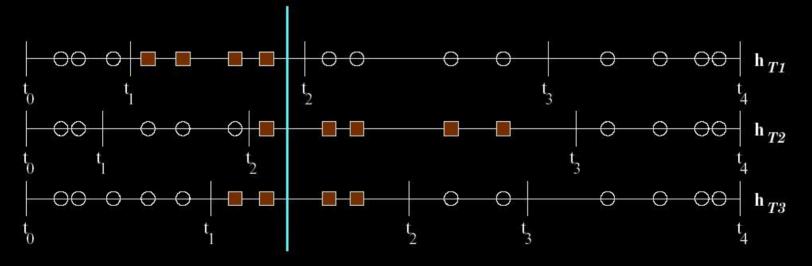
- Let T = {t_i | 0 ≤ i ≤ P } be a monotonically increasing sequence of thresholds
- Define hash function to be

$$h_T(t) = i$$
, for $t_i \le i \le t_{i+1}$



Multiple Hash Functions

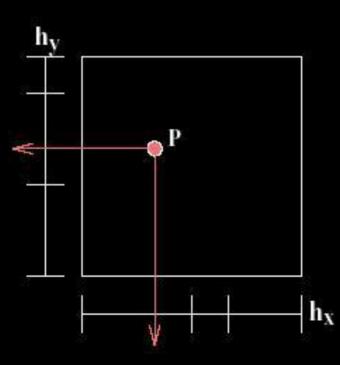
- Each hash bucket stores a subset of the local neighbourhood
- Multiple hash tables are needed for retrieving a complete neighbourhood



Block Hashing

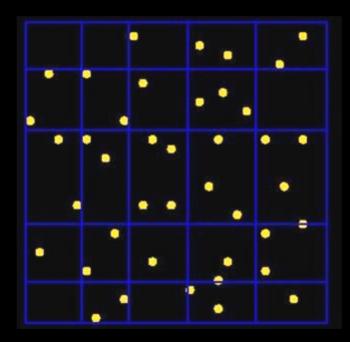
Higher Dimensions

 Multidimensional points are handled by using one hash function per dimension

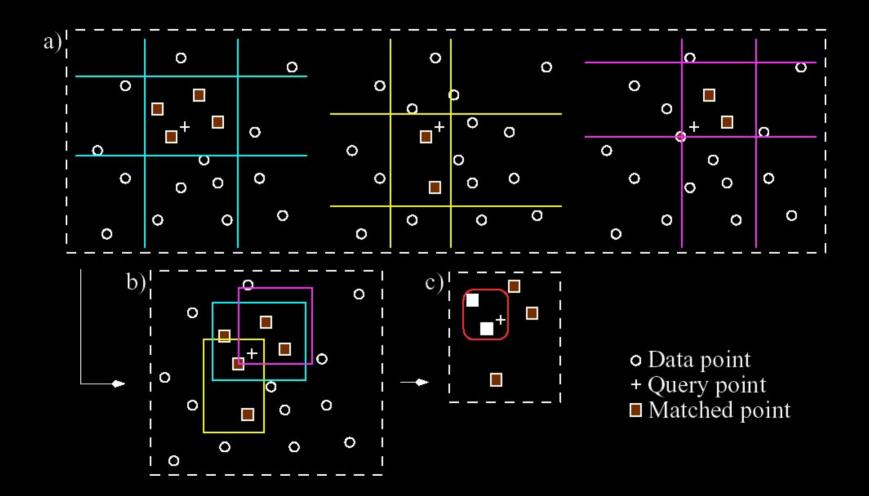


Higher Dimensions

 Together, hash functions partition space into variable-sized rectangular cells



Higher Dimensions



Block Hashing Essentials

- Photons are grouped into spatially-coherent memory blocks
- Entire blocks are inserted into the hash tables

Why Blocks of Photons?

- More desirable to insert blocks of photons into the hash table (instead of individual photons)
 - Fewer references needed per hash table bucket
 - Fewer items to compare when merging results from multiple hash tables during query
 - Photon records are accessed once per query
 - Memory block-oriented anyways

Block-Oriented Memory Model

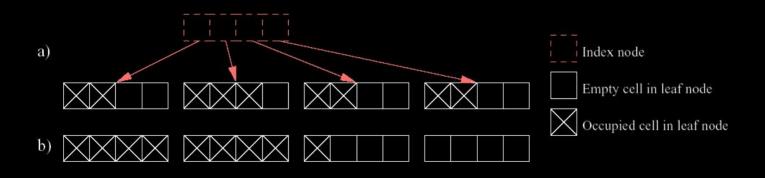
- Memory access is via burst transfer
 - Reading any part of a fixed-sized memory block implies the access to the rest of this block is virtually zero-cost
- 256-byte chosen as size of photon blocks
 - Photons are 24-bytes
 - X = 10 photons fit in each block

Block Hashing

- Preprocessing: before rendering
 - Organize photons into blocks
 - Create hash tables
 - Insert blocks into hash tables
- Query phase: during rendering

Organize Photon Blocks

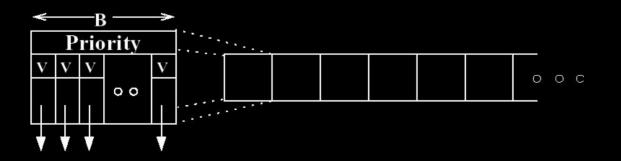
- Want to sort photons by spatial location
 - Hilbert curve generates 1D key from photon location
 - Insert photon records into B+ tree
- Leaf nodes of B+ tree becomes photon blocks
- Compact leaf nodes to minimize blocks required



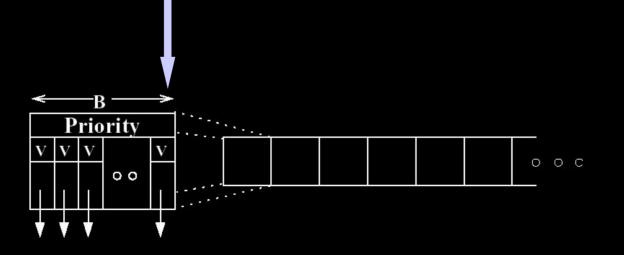
- Based on LSH:
 - L hash tables
 - Each hash table has three hash functions
 - Each function has P thresholds

- Generate thresholds adaptively
 - Create one photon-position histogram per dimension
 - Integrate \rightarrow cumulative distribution function (*cdf*)
 - Invert *cdf*, take stochastic samples to get thresholds

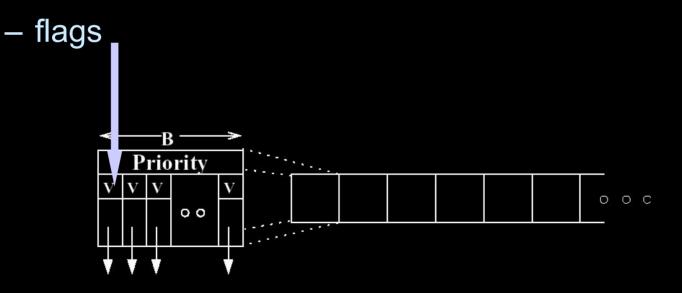
- Hash table stored as 1D array in memory
- Each element is a hash bucket



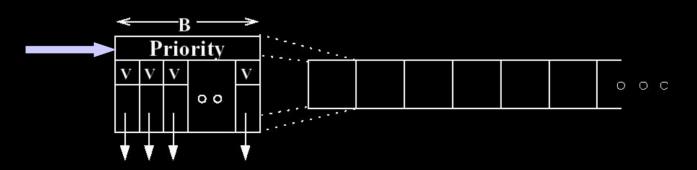
- Hash table stored as 1D array in memory
- Each element is a hash bucket
 - B references to photon blocks



- Hash table stored as 1D array in memory
- Each element is a hash bucket
 - B references to photon blocks



- Hash table stored as 1D array in memory
- Each element is a hash bucket
 - B references to photon blocks
 - flags
 - a priority value

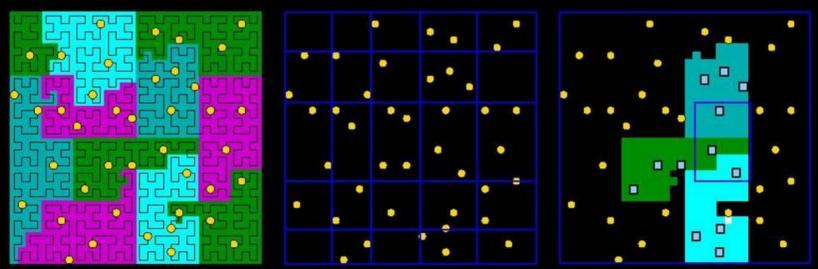


Insert Photon Blocks

- For each photon and each hash table:
 - Create hash key using 3D position of photon
 - Insert entire photon block into hash table using key
- Strategies to deal with bucket overflow

Insert Photon Blocks

- Each bucket refers to entire blocks with at least one photon that hashed into the bucket
 - Bucket also responsible for all photons in blocks it refers to



Block Hashing

- Preprocessing: before rendering
 - Organizing photons into blocks
 - Creating the hash tables
 - Inserting blocks into hash tables
- Query phase: during rendering

Querying

- Query is delegated to each hash table in parallel
- Each hash table returns all blocks contained in bucket that matched the query
- Set of unique blocks contain candidate set of photons
 - Each block contains a disjoint set of photons

Querying

- Each query yields L buckets, each bucket gives B photon blocks
- Each query retrieves at most BL blocks
- Can trade accuracy for speed:
 - User defined variable A, determines # blocks eventually included in candidate search
 - Examines at most Ak photons \rightarrow Ak/X blocks

Querying

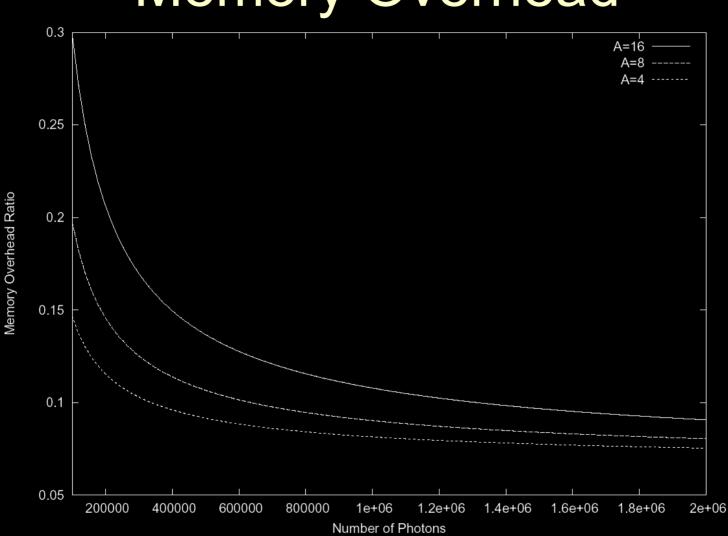
- Which photon blocks to examine first?
- Assign "quality measure" Q to every bucket in each hash table
 - $Q = B \#blocks_inserted \#overflows$
- Sort buckets by their "priority" |Q|

Parameter Values

- Need to express L, P, and B in terms of N, k and A
- Experiments showed InN is a good choice for both L and P Ak
- B is determined by k and A, given by: $\mathrm{B}>$
- Memory overhead:

$$\frac{4\frac{Ak}{X}(\ln N)^{3} + 12(\ln N)^{2} + 1.6N}{24N} = O\left[\frac{(\ln N)^{3}}{N}\right]$$

X lnN



Block Hashing

Results

- Visual quality
- Algorithmic accuracy
 - False negatives
 - Maximum distance dilation
 - Average distance dilation

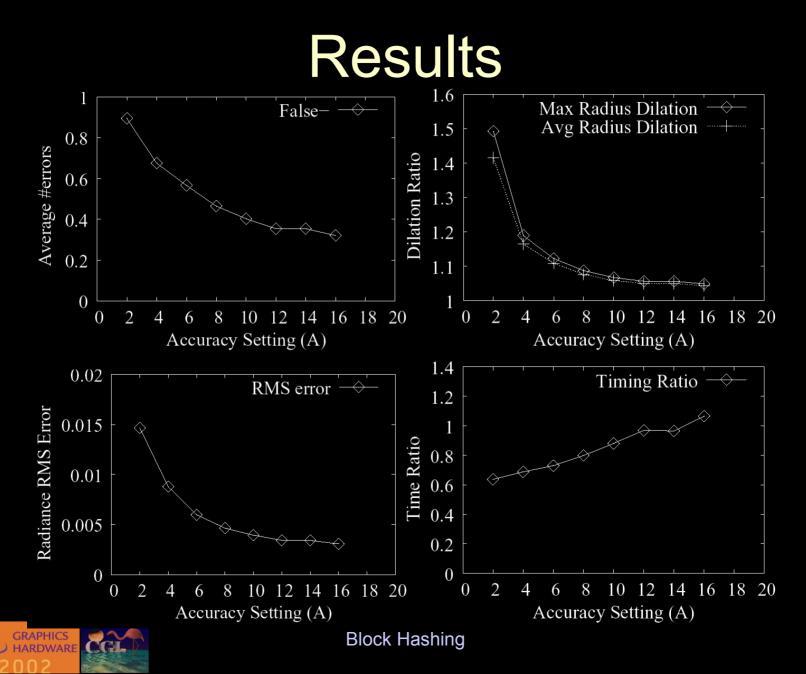
Results



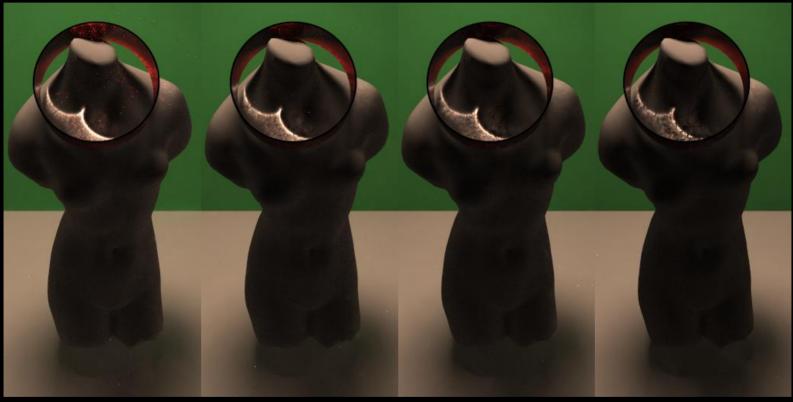
kd-tree

BH A=16

Block Hashing



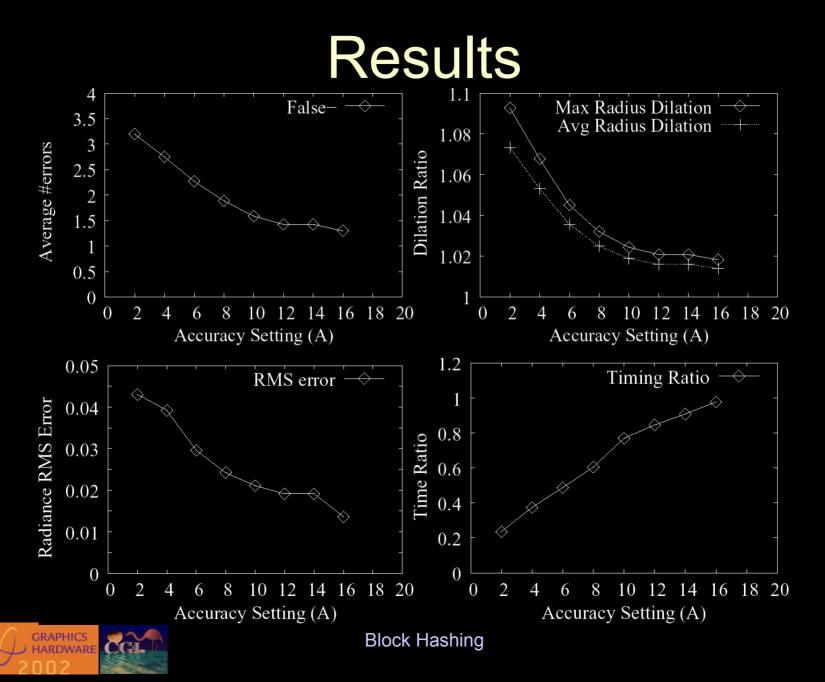
Results



kd-tree

BH A=16

BH A=8



Query phase:

- (1) Generate hash keys for 3D query position
- (2) Find hash buckets that match keys
- (3) Merge sets of photons blocks into unique collection
- (4) Retrieve photons from blocks
- (5) Process photons to find k-nearest to query position

(1) Generate hash keys for 3D query position

(5) Process photons to find k-nearest to query position

- Could be performed with current shader capabilities
- Loops will reduce shader code redundancy

(2) Find hash buckets that match keys(4) Retrieve photons from blocks

- Amounts to table look-ups
- Can be implemented as texture-mapping operations given proper encoding of data

(3) Merge sets of photons blocks into unique collection

- Difficult to do efficiently without conditionals
- Generating unique collection may reduce size of candidate set
- Alternative: Perform calculations on duplicated photons anyhow, but ignore their contribution by multiplying them by zero

Future Work

- Approximation dilates radius of bounding sphere/disc of nearest neighbours
- Experiment with other density estimators that may be less sensitive to such dilation
 - Average radius
 - Variance of radii

Future Work

 Hilbert curve encoding probably not optimal clustering strategy

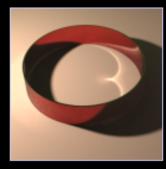
Investigate alternative clustering strategies

Conclusion

- Block Hashing is an efficient, coherent and highly parallelizable approximate k-nearest neighbour scheme
- Suitable for hardware-assisted implementation of Photon Mapping

Thank you

http://www.cgl.uwaterloo.ca/Projects/rendering/



vma@cgl.uwaterloo.ca mmccool@cgl.uwaterloo.ca

