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Why use ray tracing?

+ Global 1llumination

+ Unifying technique for volumes
+ Processing and rendering
+ Triangles, points, Implicit surfaces etc.

+ Early ray termination
+ Scene complexity independence
+ |nherently paralle



Why not use ray tracing?

- Non-uniform memory access
- Need spatial coherence



Ray Tracing Systems

Ray Queues [Pharr et a. ‘97]
Gl-Cube [Dachille, Kaufman ’ 00]

Pyramid clipping and octree subdivision
'Reinhard et al. ’ 99|

Kllauea system [Nishimuraet al. ’01]
AR250 [ART "99]
Coherent Ray Tracing [Wald, et al. 2001]
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GIl-Cube Architecture
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Ray Queues

—
7
e Maintain ray queue for /‘
each cell

* Processall rayswhile -
acell isin cache /L

e Spawned rays added
to queue of next ‘

Intersected cell /,/ //

Subdivide Volume Into Cells



Our Scheduling Schema

Cdl Tree

e Ray-cell dependencies from frame | used to
create schedule for frame 1+1

Max Work

 Hirst frame (ray dependencies unknown) and if
rays remain after Cell Tree schedule

Any level of the memory hierarchy
Cell size set to memory size
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Psuedo-Random Ray Traversal
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Cdl Tree

o Gathers clusters of rays as they’ re generated

e Concisaly describes all ray-cell
dependencies of completed frame
« 100 times fewer nodes than rays represented

 Predict better schedule for next frame



Cdl Tree Creation

1. Initialize
2. Maintain CellTreeNode in Ray Packet

3. Add nodesto Cell Tree as needed to
represent ray-cell dependencies
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Reflections Refractions and Shadows
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Reflections Refractions and Shadows
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Secondary Reflections
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Task Scheduling Problem

e Goa - minimize memory fetches
e Equivaently - minimize color changes in super

seguence which contains all sequences

Coatt 33X catl 0 0 catt 3 catl 20Xl 0
P CIEDCE



Cyclic Dependency Graphs

e Rays must visit cellsin a particular order
* A ray may revisit acell several times
» Sub-volume must be cached each time




‘\ Cache Saving Links
Ss C /

, feasible schedule - all rays

M can be processed in
/@/\:‘ ; RO required order

conflict - no feasible schedule
contains both links




Cache Saving Links

‘/o:mal schedule - maximal

group of non-conflicting
links



Chans

e Chain of non-
conflicting links may
produce a non-feasible
schedule




Multiple Chains

e A combination of
chains may also
produce a non-
feasible schedule




Definitions

H‘ generation(node) - nodes
between root and node
with same cell as node

v
\‘_" @ maxGen(cell) - max
\ number of times any

ray enters cell

@

O



Optimal Bound

—@ schedule size >=
S maxGen(cell)
_— @ cells
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Peel Algorithm

e Pedl tree leavesto create reverse schedule
e Gather cache savingslinks



Completion Peel

Remove ready cell |eaf
nodes from tree and

X add i1t to schedule
/

o

\H’
7
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/ ready cell - al the

maxGen nodes of a
@\‘ cell are leaf nodes



Split Pedl

Remove non-ready cell
|leaf nodes from tree
g and add it to schedule
/

E

o/e
\'0




Pedl (tree)
While tree has any nodes....
Does tree have aready cell c?
yes - add c to schedule and peel ¢ |eaf nodes

no - Find cell ., with most leaf nodes
Peel cell ., and add it to schedule

Return schedule
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Ped! (tree)

While tree has any nodes...
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Ped! (tree)

While tree has any nodes....
Does tree have aready cell c?
yes - add c to schedule and peel ¢ |eaf nodes
no - Find cell ., with most leaf nodes
Peel cell ., and add it to schedule
Return schedule





































Algorithm Performance

Guaranteed feasible

Not guaranteed optimal

Worst time O(n)

|mprovement over Max Work
Hardware implementation reasonable
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Tests

C++ simulation

SGI 02/RISC 10000 128MB
Volumes split into 8 cellsand 27 cells
| mage resol ution 2562












Cdl Tree Sizes
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30% Fewer Fetches
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Conclusion

e Cell Tree captures all ray-cell dependencies

* Dependency graph based agorithm
significantly improves cache performance



Future Work

Dynamic load balance
Dynamic volume subdivision
Multi-level memory hierarchy
L imited depth recursion
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