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Why use ray tracing?

+ Global illumination 
+ Unifying technique for volumes 

+ Processing and rendering

+ Triangles, points, implicit surfaces etc.

+ Early ray termination

+ Scene complexity independence 
+ Inherently parallel



Why not use ray tracing?

- Non-uniform memory access
- Need spatial coherence



Ray Tracing Systems

• Ray Queues [Pharr et al. ‘97] 
• GI-Cube [Dachille, Kaufman ’00]

• Pyramid clipping and octree subdivision 
[Reinhard et al. ’99]

• Kilauea system  [Nishimura et al. ’01]

• AR250 [ART ’99]
• Coherent Ray Tracing [Wald, et al. 2001]
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Ray Queues

• Maintain ray queue for 
each cell

• Process all rays while 
a cell is in cache 

• Spawned rays added 
to queue of next 
intersected cell 

Subdivide Volume Into CellsSubdivide Volume Into Cells



Our Scheduling Schema

• Cell Tree 
• Ray-cell dependencies from frame i used to 

create schedule for frame i+1 

• Max Work
• First frame (ray dependencies unknown) and if 

rays remain after Cell Tree schedule

• Any level of the memory hierarchy
• Cell size set to memory size
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Cell Tree

• Gathers clusters of rays as they’re generated
• Concisely describes all ray-cell 

dependencies of completed frame
• 100 times fewer nodes than rays represented

• Predict better schedule for next frame 



Cell Tree Creation

1. Initialize
2. Maintain CellTreeNodeCellTreeNode in Ray Packet 

3. Add nodes to Cell Tree as needed to 
represent ray-cell dependencies



Ray Packet
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Task Scheduling Problem

• Goal - minimize memory fetches 

• Equivalently - minimize color changes in super 
sequence which contains all sequences
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Cyclic Dependency Graphs

• Rays must visit cells in a particular order 

Cell 0 Cell 1Cell 3Cell 2

• A ray may revisit a cell several times 

• Sub-volume must be cached each time
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optimal schedule optimal schedule -- maximal 
group of non-conflicting 
links
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Multiple Chains
• A combination of 

chains may also 
produce a non-
feasible schedule
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Peel Algorithm

• Peel tree leaves to create reverse schedule 
• Gather cache savings links
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Peel (tree)
While While treetree has any nodeshas any nodes……

Does tree have a ready cell c? 

yes - add c to schedule and peel c leaf nodes
no - Find cellmax with most leaf nodes 

Peel cellmax and add it to schedule

Return schedule



Peel (tree)
While tree has any nodes…

Does Does treetree have a ready cell have a ready cell cc??

yes - add c to schedule and peel c leaf nodes
no - Find cellmax with most leaf nodes

Peel cellmax and add it to schedule

Return schedule



Peel (tree)
While tree has any nodes…

Does tree have a ready cell c? 

yes yes -- add add cc to to scheduleschedule and peel and peel cc leaf nodesleaf nodes
no - Find cellmax with most leaf nodes

Peel cellmax and add it to schedule

Return schedule



Peel (tree)
While tree has any nodes…

Does tree have a ready cell c? 

yes - add c to schedule and peel c leaf nodes

no no -- FindFind cellcellmaxmax with most leaf nodeswith most leaf nodes

Peel Peel cellcellmaxmax and add it to and add it to scheduleschedule

Return schedule



Peel (tree)
While tree has any nodes…

Does tree have a ready cell c? 

yes - add c to schedule and peel c leaf nodes
no - Find cellmax with most leaf nodes

Peel cellmax and add it to schedule

Return Return scheduleschedule



20

4

1

5 1’

0

root
3

1

1

2
2’

6

0

3

73

1



20

4

5

0

31

2
2’

6

0

3

73

root



20

5

0

31

2
2’

6

0

3

73

root



20

0

31

2
2’

6

0

3

73

root



20

0

31

2
2’

0

3

3

root

7



2

3

0

3

0

1

2

3

0
2’

root



2

3

3

0

1

2

3

2’

root



3

3

1

2

3

root

0



0

1

2

root



1

2

root



2

root



Algorithm Performance

• Guaranteed feasible
• Not guaranteed optimal

• Worst time O(n)
• Improvement over Max Work
• Hardware implementation reasonable
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Tests

• C++ simulation 
• SGI 02/RISC 10000 128MB 

• Volumes split into 8 cells and 27 cells
• Image resolution 2562
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30% Fewer Fetches
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Conclusion

• Cell Tree captures all ray-cell dependencies
• Dependency graph based algorithm 

significantly improves cache performance



Future Work

• Dynamic load balance
• Dynamic volume subdivision

• Multi-level memory hierarchy 
• Limited depth recursion
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