Dependency Graph Scheduling
In a Ray Tracing Architecture

Susan Frank and Arie Kaufman
Center for Visual Computing
Department of Computer Science
State University of New York at Stony Brook, USA

Why use ray tracing?

+ Global 1llumination

+ Unifying technique for volumes
+ Processing and rendering
+ Triangles, points, Implicit surfaces etc.

+ Early ray termination
+ Scene complexity independence
+ |nherently paralle

Why not use ray tracing?

- Non-uniform memory access
- Need spatial coherence

Ray Tracing Systems

Ray Queues [Pharr et a. ‘97]
Gl-Cube [Dachille, Kaufman ’ 00]

Pyramid clipping and octree subdivision
'Reinhard et al. ’ 99|

Kllauea system [Nishimuraet al. ’01]
AR250 [ART "99]
Coherent Ray Tracing [Wald, et al. 2001]

Qutline

Our System

Cell Tree

Dependency Graph Scheduling
Peel Algorithm

Results

GIl-Cube Architecture

PCl Bus (@)

DSP

(@) SDRAM

i

T

Ray Bus ?
Block Block Block Block
Processor Processor Processor Processor
RDRAM RDRAM RDRAM RDRAM

Single Processor

Frame
Buffer

: yu=
Main

Memory Processor

PCl_Bus
=

= I

SDRAM RDRAM

/\
\,_j> DSP (=) (=) Block
3
ad
V

~ |y

Ray Queues

—
7
e Maintain ray queue for /‘
each cell

* Processall rayswhile -
acell isin cache /L

e Spawned rays added
to queue of next ‘

Intersected cell /,/ //

Subdivide Volume Into Cells

Our Scheduling Schema

Cdl Tree

e Ray-cell dependencies from frame | used to
create schedule for frame 1+1

Max Work

 Hirst frame (ray dependencies unknown) and if
rays remain after Cell Tree schedule

Any level of the memory hierarchy
Cell size set to memory size

Qutline

Our System

Céel Tree

Dependency Graph Scheduling
Peel Algorithm

Results

Psuedo-Random Ray Traversal

R Y
N
I AN %
[, |
'\\ z ———
==
Z -
%
% 3
7

Cdl Tree

o Gathers clusters of rays as they’ re generated

e Concisaly describes all ray-cell
dependencies of completed frame
« 100 times fewer nodes than rays represented

 Predict better schedule for next frame

Cdl Tree Creation

1. Initialize
2. Maintain CellTreeNode in Ray Packet

3. Add nodesto Cell Tree as needed to
represent ray-cell dependencies

256

196

128

64

Ray Packet

Position X Position Y
Position Z Direction X
Direction Y Direction Z
Destination U | Destination V.| Lifetime

Contribution Ray ID

Opacity Generation

CellTreeNode |Cdll Red Type

| Gre‘en Blu‘e | nteraction

O 4 8 12 16 20 24 28 32

Q

|nitiali zation

Q

|nitiali zation

=1
& /7
yallE g

|nitiali zation

0 1&7
& V ’4{-7_9,’
pallE g

|nitiali zation

Reflections Refractions and Shadows

O
Q/Q

Reflections Refractions and Shadows

o
Q/Q
/l:
0 | J s

Reflections Refractions and Shadows

o
C/Q
O
/:
0 | J’@

Reflections Refractions and Shadows

o
\@:8

4

Reflections Refractions and Shadows

O
®
\()i:g

: A
é,_’ :/ ” ——
N W
- e |—!’ < Py

Reflections Refractions and Shadows

O
®
\()i:g

!

\ l

|
"

Secondary Reflections

)
(1
(o] QigG

¥
\
"4

Secondary Reflections

O
(1
(o] OigG

|

\

\

\

AR
4

Secondary Reflections

O
®
()
\Q\‘ﬁ

4

Secondary Reflections
o

o
\@\@/@

o O

4

Qutline

Our System

Cell Tree

Dependency Graph Scheduling
Peel Algorithm

Results

Task Scheduling Problem

e Goa - minimize memory fetches
e Equivaently - minimize color changes in super

seguence which contains all sequences

Coatt 33X catl 0 0 catt 3 catl 20Xl 0
P CIEDCE

Cyclic Dependency Graphs

e Rays must visit cellsin a particular order
* A ray may revisit acell several times
» Sub-volume must be cached each time

‘\ Cache Saving Links
Ss C /

, feasible schedule - all rays

M can be processed in
/@/\:‘ ; RO required order

conflict - no feasible schedule
contains both links

Cache Saving Links

‘/o:mal schedule - maximal

group of non-conflicting
links

Chans

e Chain of non-
conflicting links may
produce a non-feasible
schedule

Multiple Chains

e A combination of
chains may also
produce a non-
feasible schedule

Definitions

H‘ generation(node) - nodes
between root and node
with same cell as node

v
\‘_" @ maxGen(cell) - max
\ number of times any

ray enters cell

@

O

Optimal Bound

—@ schedule size >=
S maxGen(cell)
_— @ cells
@ e
/
/ /
(o) /

/
/
@/\’

O

Qutline

Our System

Cell Tree

Dependency Graph Scheduling
Peel Algorithm

Results

Peel Algorithm

e Pedl tree leavesto create reverse schedule
e Gather cache savingslinks

Completion Peel

Remove ready cell |eaf
nodes from tree and

X add i1t to schedule
/

o

\H’
7
@

/ ready cell - al the

maxGen nodes of a
@\‘ cell are leaf nodes

Split Pedl

Remove non-ready cell
|leaf nodes from tree
g and add it to schedule
/

E

o/e
\'0

Pedl (tree)
While tree has any nodes....
Does tree have aready cell c?
yes - add c to schedule and peel ¢ |eaf nodes

no - Find cell ., with most leaf nodes
Peel cell ., and add it to schedule

Return schedule

Ped! (tree)

While tree has any nodes....
Does tree have aready cell c?
yes - add c to schedule and peel ¢ |eaf nodes
no - Find cell ., with most leaf nodes
Peel cell ., and add it to schedule
Return schedule

Pedl (tree)
While tree has any nodes....
Does tree have aready cell c?
yes - add c to schedule and peel ¢ leaf nodes
no - Find cell ., with most leaf nodes
Peel cell ., and add it to schedule
Return schedule

Ped! (tree)

While tree has any nodes...
Does tree have aready cell c?
yes - add c to schedule and peel ¢ |eaf nodes
no - Find cell ., with most leaf nodes
Peel cell ., and add it to schedule

Return schedule

Ped! (tree)

While tree has any nodes....
Does tree have aready cell c?
yes - add c to schedule and peel ¢ |eaf nodes
no - Find cell ., with most leaf nodes
Peel cell ., and add it to schedule
Return schedule

Algorithm Performance

Guaranteed feasible

Not guaranteed optimal

Worst time O(n)

|mprovement over Max Work
Hardware implementation reasonable

Qutline

Our System

Cell Tree

Dependency Graph Scheduling
Peel Algorithm

Results

Tests

C++ simulation

SGI 02/RISC 10000 128MB
Volumes split into 8 cellsand 27 cells
| mage resol ution 2562

Cdl Tree Sizes

O Brain
B Clouds
OLobster

CellTree CellTree

100X100 Image 256X256 Image

30% Fewer Fetches

O Max Work
@mCell Tree
O Optimal Bound

(%]
(]
N
O
]
(]
LL
>
[
O
=
(]
=

:“‘“““
.]
]
r

Brain Clouds Lobster

Conclusion

e Cell Tree captures all ray-cell dependencies

* Dependency graph based agorithm
significantly improves cache performance

Future Work

Dynamic load balance
Dynamic volume subdivision
Multi-level memory hierarchy
L imited depth recursion

Acknowledgments

ONR Grant N00140110034
NY STAR Grant CODO0057
CES Computer Solutions Inc.

Kevin Kreeger, Frank Dachille, Michael
Bender, Nan Zhang

