
Dependency Graph Scheduling
in a Ray Tracing Architecture

Susan Frank and Arie Kaufman
Center for Visual Computing

Department of Computer Science

State University of New York at Stony Brook, USA

Why use ray tracing?

+ Global illumination
+ Unifying technique for volumes

+ Processing and rendering

+ Triangles, points, implicit surfaces etc.

+ Early ray termination

+ Scene complexity independence
+ Inherently parallel

Why not use ray tracing?

- Non-uniform memory access
- Need spatial coherence

Ray Tracing Systems

• Ray Queues [Pharr et al. ‘97]
• GI-Cube [Dachille, Kaufman ’00]

• Pyramid clipping and octree subdivision
[Reinhard et al. ’99]

• Kilauea system [Nishimura et al. ’01]

• AR250 [ART ’99]
• Coherent Ray Tracing [Wald, et al. 2001]

Outline

•• Our SystemOur System
• Cell Tree

• Dependency Graph Scheduling
• Peel Algorithm
• Results

GI-Cube Architecture
DSP

SDRAMPCI Bus

Ray Bus

Block
Processor

Block
Processor

Block
Processor

Block
Processor

RDRAM RDRAM RDRAM RDRAM

800MHz

Single Processor

DSP

SDRAM

P
C

I
B

us

R
a

y

B

u
s

Block
Processor

RDRAM

Frame
Buffer

CPU

Main
Memory

Ray Queues

• Maintain ray queue for
each cell

• Process all rays while
a cell is in cache

• Spawned rays added
to queue of next
intersected cell

Subdivide Volume Into CellsSubdivide Volume Into Cells

Our Scheduling Schema

• Cell Tree
• Ray-cell dependencies from frame i used to

create schedule for frame i+1

• Max Work
• First frame (ray dependencies unknown) and if

rays remain after Cell Tree schedule

• Any level of the memory hierarchy
• Cell size set to memory size

Outline

• Our System

•• Cell TreeCell Tree

• Dependency Graph Scheduling
• Peel Algorithm
• Results

Psuedo-Random Ray Traversal

5

3

7

4

2

6

0 1

Cell Tree

• Gathers clusters of rays as they’re generated
• Concisely describes all ray-cell

dependencies of completed frame
• 100 times fewer nodes than rays represented

• Predict better schedule for next frame

Cell Tree Creation

1. Initialize
2. Maintain CellTreeNodeCellTreeNode in Ray Packet

3. Add nodes to Cell Tree as needed to
represent ray-cell dependencies

Ray Packet

Contribution

256

196

0

Position X

Position Z

Position Y

Direction X

Direction ZDirection Y

Destination U LifetimeDestination V

GenerationOpacity

Interaction

Red

Green Blue

CellTreeNodeCellTreeNode

4 8 12 16 20 24 28 32

0

64

128

TypeCell

Ray ID

5

3

7

4

2

6

0 1

1

root

Initialization

5

3

7

4

2

6

0 1

1

root

Initialization

5

3

7

4

2

6

0 1

1

root

Initialization

2

5

3

7

4

2

6

0 1

1

root

Initialization

2

5

3

7

4

2

6

0 1

1

root

Reflections Refractions and Shadows

2
1

5

3

7

4

2

6

0 1

1

root

Reflections Refractions and Shadows

2
1

5

3

7

4

2

6

0 1

1

root

Reflections Refractions and Shadows

2
1

5

5

3

7

4

2

6

0 1

Reflections Refractions and Shadows

1

root

2
1

5

5

3

7

4

2

6

0 1

Reflections Refractions and Shadows

1

root

2
1

5

2

5

3

7

4

2

6

0 1

Reflections Refractions and Shadows

1

root

2
1

5

2

5

3

7

4

2

6

0 1

Secondary Reflections

1

root

2
1

5

2

2

5

3

7

4

2

6

0 1

Secondary Reflections

1

root

2
1

5

2

2

Secondary Reflections

1

root

2
1

5

2

2

2

5

3

7

4

2

6

0 1

Secondary Reflections

1

root

2
1

5

2

2

2

5

3

7

4

2

6

0 1

1

Outline

• Our System
• Cell Tree

•• Dependency Graph SchedulingDependency Graph Scheduling
• Peel Algorithm
• Results

Task Scheduling Problem

• Goal - minimize memory fetches

• Equivalently - minimize color changes in super
sequence which contains all sequences

Cell 0

Cell 1

Cell 3 Cell 2

Cell 0

Cell 0

Cell 1 Cell 3

Cell 3 Cell 0

Cell 0

Cell 2 Cell 2Cell 1 Cell 3

Cyclic Dependency Graphs

• Rays must visit cells in a particular order

Cell 0 Cell 1Cell 3Cell 2

• A ray may revisit a cell several times

• Sub-volume must be cached each time

20

4

1

5 1

0

root
3

1

1

2

2’

6

0

3

73

1

Cache Saving Links

feasible schedulefeasible schedule -- all rays
can be processed in
required order

conflictconflict - no feasible schedule
contains both links

3

20

4

1

5 1

0

root
3

1

1

2

2’

6

0

3

73

1

Cache Saving Links

optimal schedule optimal schedule -- maximal
group of non-conflicting
links

20

4

1

5 1

0

root
3

1

1

2

2’

6

0

3

73

1

• Chain of non-
conflicting links may
produce a non-feasible
schedule

Chains

20

4

1

5 1

0

root
3

1

1

2

2’

6

0

3

73

1

Multiple Chains
• A combination of

chains may also
produce a non-
feasible schedule

0 1

5 1

3

root 3

1

1

2

3

1

2
3

1

3
2

1

Definitions
generation(node) generation(node) - nodes

between root and nodenode
with same cell as nodenode

maxGen(cell) maxGen(cell) - max
number of times any
ray enters cellcell

3

3

0 1

5 1

3

root 3

1

1

2

3

1

2
3

1

3
2

1

Optimal Bound
schedule size >=

Σ maxGen(cell)

3

3

cells

Outline

• Our System
• Cell Tree

• Dependency Graph Scheduling

•• Peel AlgorithmPeel Algorithm
• Results

Peel Algorithm

• Peel tree leaves to create reverse schedule
• Gather cache savings links

3

0 1

5 1

3

root 3

1

1

2

3

1

2
3

1

3
2

1

Completion Peel
Remove ready cellready cell leaf

nodes from tree and
add it to schedule

3

ready cellready cell - all the
maxGen nodes of a
cell are leaf nodes

3

0 1

5 1

root 3

1

1

2

3

1

2
3

1

3
2

1

Split Peel
Remove non-ready cell

leaf nodes from tree
and add it to schedule

3

Peel (tree)
While While treetree has any nodeshas any nodes……

Does tree have a ready cell c?

yes - add c to schedule and peel c leaf nodes
no - Find cellmax with most leaf nodes

Peel cellmax and add it to schedule

Return schedule

Peel (tree)
While tree has any nodes…

Does Does treetree have a ready cell have a ready cell cc??

yes - add c to schedule and peel c leaf nodes
no - Find cellmax with most leaf nodes

Peel cellmax and add it to schedule

Return schedule

Peel (tree)
While tree has any nodes…

Does tree have a ready cell c?

yes yes -- add add cc to to scheduleschedule and peel and peel cc leaf nodesleaf nodes
no - Find cellmax with most leaf nodes

Peel cellmax and add it to schedule

Return schedule

Peel (tree)
While tree has any nodes…

Does tree have a ready cell c?

yes - add c to schedule and peel c leaf nodes

no no -- FindFind cellcellmaxmax with most leaf nodeswith most leaf nodes

Peel Peel cellcellmaxmax and add it to and add it to scheduleschedule

Return schedule

Peel (tree)
While tree has any nodes…

Does tree have a ready cell c?

yes - add c to schedule and peel c leaf nodes
no - Find cellmax with most leaf nodes

Peel cellmax and add it to schedule

Return Return scheduleschedule

20

4

1

5 1’

0

root
3

1

1

2
2’

6

0

3

73

1

20

4

5

0

31

2
2’

6

0

3

73

root

20

5

0

31

2
2’

6

0

3

73

root

20

0

31

2
2’

6

0

3

73

root

20

0

31

2
2’

0

3

3

root

7

2

3

0

3

0

1

2

3

0
2’

root

2

3

3

0

1

2

3

2’

root

3

3

1

2

3

root

0

0

1

2

root

1

2

root

2

root

Algorithm Performance

• Guaranteed feasible
• Not guaranteed optimal

• Worst time O(n)
• Improvement over Max Work
• Hardware implementation reasonable

Outline

• Our System
• Cell Tree

• Dependency Graph Scheduling
• Peel Algorithm

•• ResultsResults

Tests

• C++ simulation
• SGI 02/RISC 10000 128MB

• Volumes split into 8 cells and 27 cells
• Image resolution 2562

Cell Tree Sizes

0

100000

200000

300000

400000

500000

600000

700000

N
od

es

CellTree Rays CellTree Rays

100X100 Image 256X256 Image

Brain

Clouds

Lobster

30% Fewer Fetches

0

20
40
60
80

100
120
140
160
180

200

M
em

o
ry

 F
et

ch
es

Brain Clouds Lobster

Max Work

Cell Tree

Optimal Bound

Conclusion

• Cell Tree captures all ray-cell dependencies
• Dependency graph based algorithm

significantly improves cache performance

Future Work

• Dynamic load balance
• Dynamic volume subdivision

• Multi-level memory hierarchy
• Limited depth recursion

Acknowledgments

• ONR Grant N00140110034
• NYSTAR Grant COD0057

• CES Computer Solutions Inc.
• Kevin Kreeger, Frank Dachille, Michael

Bender, Nan Zhang

Thank you!

