
7

Algorithms for Division Free Perspective Correct Rendering

B. Barenbrug, F.J. Peters, and C.W.A.M. van Overveld*

Philips Research Laboratories

Abstract

Well known implementations for perspective correct rendering of
planar polygons require a division per rendered pixel. Such a
division is better to be avoided as it is an expensive operation in
terms of silicon gates and clock cycles. In this paper we present a
family of efficient midpoint algorithms that can be used to avoid
division operators. These algorithms do not require more than a
small number of additions per pixel. We show how these can be
embedded in scan line algorithms and in algorithms that use
mipmaps. Experiments with software implementations show that
the division free algorithms are a factor of two faster, provided
that the polygons are not too small. These algorithms are however
most profitable when realised in hardware.

CR Categories: I.3.3 [Computer Graphics]: picture/image
generation − Display algorithms; I.3.7 [Computer Graphics]:
three dimensional graphics and realism − color, shading,
shadowing and texture

Keywords: midpoint algorithm; perspective correct; texture
mapping; hyperbolic interpolation

1 INTRODUCTION
Well known implementations for perspective correct rendering of
planar polygons (such as hyperbolic interpolation[1], also known
as rational linear interpolation [5]) require a division per rendered
pixel. Such a division is better to be avoided as it is an expensive
operation in terms of silicon gates and clock cycles.

Midpoint algorithms [7] are well known for the approximation of
conic sections, such as hyperbolae. These algorithms use integer
arithmetic only. James Mears [6] points out how the midpoint
paradigm may be used for perspective correct texture mapping. As
we will point out later, the approach on this web page is not
correct. Jan Vondrak mentioned a similar technique, but published
his ideas in a usenet posting only.

Various proposals have been formulated to approximate the
hyperbolic curve that is needed by some sort of higher-order
polynomial approximation [3][10]. Besides their efficiency, the
other main advantage of the midpoint algorithms over these
approaches is that no approximations are computed, but exact
values (within the precision that is requested).

In this paper we present a family of efficient midpoint algorithms
that avoid division operators for perspective correct rendering of
plane polygons and that do not require more than a small number
of additions per pixel. We present how these midpoint algorithms
can be embedded in scan line algorithms and algorithms that use
mipmaps. Experiments with software implementations show that
the division free algorithms are about a factor two faster, for not
too small polygons. These algorithms are however most profitable
when realised in hardware.

As such, this family of algorithms is an efficient alternative for
those situations where one would otherwise use hyperbolic
interpolation.

2 PERSPECTIVE TRANSFORMATIONS
The general form of a perspective transformation is:

where x’, y’, w’ are interpreted as homogeneous 2D screen
coordinates and u, v as parameters for the relevant rendering
attributes (e.g. texture coordinates). The values x=x’/w’ and
y=y’/w’ are thus given by:

In (1) x and y are defined as functions of u and v. These formulas
may however be rewritten such that u and v are functions of x and
y. Then we find expressions of exactly the same form. Indeed, let

then the following holds:

[] []

⋅=

IFC

HEB

GDA

vuwyx 1,,’,’,’

* bart.barenbrug@philips.com
 frans.peters@philips.com
 overv@natlab.research.philips.com

 Prof. Holstlaan 4, 5656 AA Eindhoven, Netherlands

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HWWS 2000 Interlaken Switzerland
Copyright ACM 2000 1-58133-257-3/00/08…$5.00

IHvGu

CBvAu
x

++
++=

IHvGu

FEvDu
y

++
++=)1(

=

−

TQM

SPL

RNK

IFC

HEB

GDA 1

8

In the next sections we will consider u and v as functions of x and
y. Similar algorithms however may be developed in cases where it
is more advantageous to consider x and y as functions of u and v;
see e.g. [2].

3 MIDPOINT ALGORITHM
We start with the assumption that all variables to be used are
scaled such that they take integer values only. (This is an
acceptable assumption as it allows fixed point representations for
attributes related to e.g. edge anti-aliasing and bilinear filtering.)
We will next formulate the midpoint paradigm in terms of
invariants [8].

3.1 Derivation of invariants
The derivation of the invariants is based on relations (2) and (3).
Suppose that we have to compute ui for a series of xi and yi

values. The midpoint algorithm applied to this problem yields that
we have to produce a sequence of ui values such that:

Here ui is being driven by xi and yi. Replacing K, L and M by N, P
and Q, and ui by vi yields the expressions for vi as a function of xi

and yi.

We introduce the following variables:

 x=xi y=yi u=ui d=2(R x+S y+T)

All d’s in the sequence can be assumed to have the same sign. If
the matrix in (2) originates from texturing as in OpenGL or
Direct3D, d=0 corresponds to a projection plane that is coincident
with the plane parallel to the screen and through the view point. If
we assume that texturing is done after clipping, we know that d≠0.
Furthermore, the pixels of a triangle either all have d>0 or all
have d<0, since they all lie on the same side of the plane parallel
to the screen through the viewing point (again because of
clipping).

Because of the divisions in (3), we can choose to scale the matrix
in (2) by any nonzero factor. We choose to multiply the matrix by
sign(d) (because of the considerations presented above, a d-value
based on any (x,y) pair of the triangle will do). In this way, we can
guarantee that d>0, which greatly simplifies our derivation and

resulting code. Note that this still leaves us the freedom to scale
by any positive factor later.

Substituting (5) in the invariant (4), and multiplying by d (using
d>0) yields:

 2(Kx+Ly+M) – d/2< ud ≤ 2(Kx+Ly+M)+ d/2

which is equivalent to:

 ud-(R+2K)x-(S+2L)y-(T+2M)+d > 0 ∧
ud-(R+2K)x-(S+2L)y-(T+2M) ≤ 0

By introducing E=ud-(R+2K)x-(S+2L)y-(T+2M), we have:

 0<E+d ∧ E ≤ 0

Note that (the value of) d depends on (the values of) x and y; and
that E depends on u, d, x and y. During scan-line algorithms, y is
increased and x can either be increased or decreased. We will now
investigate how the values of E and d can be restored after such
changes.

3.2 Restoring the values of E and d
Incrementing y by 1 requires the following adjustments to our
variables:

d:=d+2S and E:=E+(2u-1)S-2L.

Incrementing x by 1 leads to:

d:=d+2R and E:=E+(2u-1)R-2K.

whereas decrementing x by 1 requires:

d:=d-2R and E:=E-(2u-1)R+2K.

To facilitate these adjustments, we introduce variables

a=(2u-1)R-2K and b=(2u-1)S-2L.

The changes in value of E (due to changes in x and/or y) can
require restoration of invariant (6).

3.3 Restoring invariant (6)
The adjustments needed to restore (6) can be made by
incrementing/decrementing u by 1.

Incrementing u by 1 requires:

E:=E+d; a:=a+2R; b:=b+2S;

And decrementing u by 1 requires:

E:=E-d; a:=a-2R; b:=b-2S;

Since d>0, E increases when u increases, and E decreases when u
decreases. So we know in which direction to adjust u in order to
increment/decrement E. However, an increment by 1 in x or y may
require multiple unit increments or decrements in u, depending on
the value of the partial derivatives ∂u/∂x and ∂u/∂y, respectively.

[] []

⋅=

TQM

SPL

RNK

wyxvu ’,’,’1,, ()2

TSyRx

MLyKx
u

++
++=

TSyRx

QPyNx
v

++
++= ()3

5.05.0 +
++
++

≤<−
++
++

TSyRx

MLyKx
u

TSyRx

MLyKx

ii

ii
i

ii

ii ()4

()5

()6

9

We will later introduce mipmapping to bound the values of these
jacobians. But still, we cannot simply use a conditional unit
increment or decrement of u, but we have to use a while loop
instead. (This is the point where Mears’ algorithm [6] is in error.
Mears’ algorithm does not have such a while loop, but instead it
uses the partial derivatives ∂u/∂x and ∂u/∂y; these are called the
gears. If need arises the variables that represent these gears are
updated; these updates however are implemented as either an
increment or a decrement with 1. This is erroneous: if the
hyperbolic curve to be approximated is very steep, then updates
with increments or decrements larger than 1 might be required.)

3.4 Algorithm
All of the above gives rise to the following algorithm to compute,
e.g. for a sequence of (xi , y) values, the corresponding ui values.

 // Initialisation of x, u, d, a, b and E;
 while (x < xmax) do

x+=1; E+=a; d+=2*R;
// restore invariants for E:
while (E >0) do u-=1; E-=d; a-=2*R od;
while (E+d≤0) do u+=1; E+=d; a+=2*R od;

od;

Note that of the two innermost while-loops, only one can have a
guard that is true, and it will always be the same during the entire
looping over x. A case selection therefore could be made in
advance.

Note how well the algorithm is qualified for realisation in
hardware.

Note moreover, that the algorithm is efficient. Each iteration of
both the innermost and the outermost loops requires only three
additions and/or subtractions (which might be executed in
parallel). The total number of iterations performed by the
algorithm is (umax − umin) + (xmax − xmin). Compared with
traditional algorithms this saves (xmax − xmin) divisions, at the
cost of a more involved setup.

3.5 Setup
The midpoint algorithm does require more setup. In addition to
the traditional setup calculations, matrix elements K−T must be
calculated from (see equation (2)):

Because of the homogenous nature of the equation, we do not
have to perform a full inversion of the matrix consisting of the
[x’,y’,w’] vectors, but can simply calculate the adjoint of this
matrix (saving the cost of the division by the determinant). This
costs 18 multiplications. The remaining multiplication with the
matrix consisting of the [u,v,1] vectors also costs 18
multiplications. In Section 4.4 we will show the effects on overall
computation time.

4 INCORPORATION IN A SCANLINE
ALGORITHM

4.1 Extending a scanline algorithm
Classical scanline algorithms traverse triangles that need to be
rendered by having an inner loop that traverses in the screen-x
direction, which is embedded in an outer loop which traverses the
screen-y direction, over the range of the triangle. During this
traversal, the algorithm maintains two active edges between which
the scanlines are drawn. We will call these edges the left and the
right edge (l and r for short). Each of these edges has to be
discretised in order to provide the start and end points of a
scanline. This is shown in the figure below.

In [8], a derivation of a midpoint algorithm is presented which
updates the x-values of the points on the active edges as the y-
coordinate is increased. For this algorithm (using the end points
(x0,y0) and (x1,y1) of the left edge), the variables dx and dy are
introduced, as well as invariants:

Introduction of variable e, defined by e=dx(y-y0)-(x-x0)dy leads
to the invariant:

e≤0 ∧ 0<e+dy

This active edge traversal is performed in the following code:

 y:=y0; dy:=y1-y0;
 xl:=x0; dxl:=xl-x0; exl:=0;
 xr:=x2; dxr:=x3-x2; exr:=0;
 // now traverse the scanlines:
 while (y<y1) do

// restore invariants for xl and xr:
while (exl+dy<=0) do xl-=1; exl+=dy od;
while (exl > 0) do xl+=1; exl-=dy od;
while (exr+dy<=0) do xr-=1; exr+=dy od;
while (exr > 0) do xr+=1; exr-=dy od;
// now we are ready to render a scanline:

1)()(0000 +−+<≤−+ yy
dy
dxxxyy

dy
dxx

01 xxdx −= 01 yydy −=∧ ∧

⋅

=

TQM

SPL

RNK

wyx

wyx

wyx

vu

vu

vu

’
2

’
2

’
2

’
1

’
1

’
1

’
0

’
0

’
0

22

11

00

1

1

1

10

Scanline(xl,xr,y);
// increase y to go to the next scanline:
y+=1; exr+=dxr; exl+=dxl

 od;

The Scanline procedure draws a horizontal line at height y from
xl to xr. We will start with this Scanline procedure to add the
midpoint algorithm for the texture coordinates. The procedure has
a loop (we will call this the “inner loop” from now on) in which x
is incremented from xl to xr, in order to traverse the scanline. For
each of the pixels that are encountered, we will need to update the
u and v coordinates to be able to retrieve the correct colour from
the texture map.

We will assume that for each of the end points the texture
coordinates are given (so the end point with x-coordinate xi has
texture coordinate (ui,vi).

The following pseudo code shows the enhanced Scanline
procedure, using the midpoint algorithm to keep up-to-date values
for u and v. The classical scanline code is in italics, while the
additional midpoint code is in regular font. Any interpolation of z-
values for the benefit of z-buffering is ignored here.

 Scanline(xmin,xmax,y,umin,vmin: integer;
eu,ev,au,av,d: real)

{
// starting values for E,a and d
// for u and v are calculated

 // in the outer loop
x:=xmin; u:=umin; v:=vmin;
while (x<xmax) do
// restore invariants for u and v:
while (eu >0) do u-=1; eu-=d; au-=2*R od;
while (eu+d≤0) do u+=1; eu+=d; au+=2*R od;
while (ev >0) do v-=1; ev-=d; av-=2*R od;
while (ev+d≤0) do v+=1; ev+=d; av+=2*R od;
// render the pixel:
pixel[x,y]:=texel_colour(u,v);
// go to the next pixel:
x+=1; eu+=au; ev+=av; d+=2*R

od;
}

As noted in Section 3.4, only one of the two while-loops that
update u (the same for v) can have a guard that is true, and it will
always be the same during the entire looping over x. A case
selection could be made in advance, yielding four cases for the
example above (two possibilities of each of the two loop-pairs).
Many modern renderers however need to support multi-texturing;
e.g. Direct3D allows up to eight (u,v) pairs, leading to 216

different cases (218 in the outer loop where also two x-values have
to be interpolated). Since the presence of both loops only means a
slight performance degradation (since one more guard has to be
checked), and these loops otherwise do not interfere with each
other, no case analysis is made. In hardware, both guards may be
evaluated in parallel, if so required.

The outer loop is a bit more complex, since both x and y are
adjusted there. The following code shows the additions for
maintaining u and v values for the left edge:

 // initialisation:
 y:=y0; dy:=y1-y0;
 xl:=x0; dxl:=x1-x0; exl:=0;
 xr:=x2; dxr:=x3-x2; exr:=0;

 d:=2*(R*xl*S*y+T);
 u:=u0; au:=(2*u-1)*R-2*K; bu:=(2*u-1)*S-2*L;
 v:=v0; av:=(2*v-1)*R-2*N; bv:=(2*v-1)*S-2*P;
 eu:=u*d-((R+2*K)*xl+(S+2*L)*y+T+2*M);
 ev:=v*d-((R+2*N)*xl+(S+2*P)*y+T+2*Q);
 // active edge traversal:
 while (y<y1) do

// restore invariants for xl and xr:
while (exl+dy<=0) do
 xl-=1; exl+=dy; eu-=au; ev-=av; d-=2*R
od;
while (exl > 0) do
xl+=1; exl-=dy; eu+=au; ev+=av; d+=2*R

od;
while (exr+dy<=0) do xr-=1; exr+=dy od;
while (exr > 0) do xr+=1; exr-=dy od;
// restore invariants for u and v:
while (eu +d <=0) do
u +=1; eu +=d; au+=2*R; bu+=2*S

od;
while (eu > 0) do
u -=1; eu -=d; au-=2*R; bu-=2*S

od;

while (ev +d <=0) do
v +=1; ev +=d; av+=2*R; bv+=2*S

od;
while (ev > 0) do
v -=1; ev -=d; av-=2*R; bv-=2*S

od;
// now we are ready to render a scanline:
Scanline(xl,xr,y,u,v,eu,ev,au,av,d);
// increase y to go to the next scanline:
y+=1; exr+=dxr; exl+=dxl;
eu+=bu; ev+=bv; d+=2*S

 od;

Since expressions 2R and 2S are used so often, a variable can be
introduced for each of these to speed up the calculations.

4.2 Use of mipmaps
The algorithm as described in the previous section just computes
texture coordinates, and more or less implements point sampling.
We now show how to use mipmaps (more on mipmaps can be
found in [4]). Mipmaps provide better filtering than the point
sampling, and also limit the number of iterations required in the
inner loop to correct the invariants for u and v: as proper mipmap
level selection ensures that the values of jacobians like ∂u/∂x
never exceed a value of two, at most two iterations for the
invariant correction are required.

The following assumes a form of mipmap organisation where we
have smaller versions of the original texture map, each scaled
down in both u and v directions by a factor two with respect to the
level below (so mipmap level 0 is the original texture map, level 1
is the original scaled down by a factor 2 in both u and v, level 2 is
the original scaled down by a factor 4 in u and v, etc.).

4.2.1 Mipmap level coordinate systems

For each of the mipmap levels, there is a different correspondence
between the texture coordinates in that mipmap level and the
screen coordinates. We can choose the coordinate system for our
higher mipmap levels such that for mipmap level m:

11

(and similarly for v). For the variables we introduced, we can
account for this by multiplying R, S and T by 2p, and dividing K,
L, and M by 2q, where p+q=m. The values p and q can be chosen
in order to make best usage of the available word length for the
variables K, L, …T in fixed point representation If for instance
we set q=m, p=0 we get:

 d=2(Rx+Sy+T)
 E=ud-(R+(2/2m)K)x-(S+(2/2m)L)y-(T+(2/2m)M)
 a=(2u-1)R-(2/2m)K
 b=(2u-1)S-(2/2m)L

4.2.2 Mipmap level switching

Now that we know how to adjust our variables in correspondence
to the current mipmap level, we have to determine how to decide
on which mipmap level to use. (A wrong level either leads to
aliasing or to blurring.) Ideally, there is an approximate 1:1
correspondence between the distance between adjacent texels and
the distance between adjacent pixels. That is: we want to keep the
absolute values of ∂u/∂x and ∂u/∂y close to one (and similar for
v). An often used formula (where log stands for 2log) is:

In order to determine the mipmap level, we need to determine
expressions for the derivatives. In terms of our variables (using
the u and v of the current mipmap level), the following
expressions can be derived (for u, and similar for v):

We can approximate these with:

Since a changes with 2R per texel, and b with 2S, this
approximation only means that the mipmap level is switched half
a texel earlier or later.

These expressions are based on the values of a and b for the
current mipmap level. Hence the resulting value for m in (7) is
relative to the current mipmap level and therefore a mipmap level
change requires adjusting a and b. Rewriting (7) using Euclidean
distance measure yields:

and using Manhattan distance:

Since we are only interested in integer values for ∆m, we can take
the integer log. If the real numbers a, b and d are represented as

floating point numbers, taking the integer log is simply a matter of
selecting the exponent. For a fixed point representation, this log is
easily evaluated by determining the position of the most
significant "1" bit. So these expressions are easily evaluated (note
that taking the logarithm also removes the need to explicitly
perform the division of a or b by d).

For each pixel, we can evaluate ∆m and see if we need to switch
mipmap level(s) by adjusting/recalculating the values for a, b and
E. Since the precise location of a mipmap level switch is usually
not critical, we can even afford to perform this test, say, only once
every 2 or 3 pixels.

4.3 Super-sampling
Many anti-aliasing methods exist to improve image quality. We
need a method which provides full anti-aliasing (and not just edge
anti-aliasing) to handle texture features. Super-sampling is a
technique that combines well with the midpoint algorithm because
the midpoint algorithm is well suited for triangles with many
pixels (see Section 4.4), and super-sampling enlarges the number
of samples to be processed in a triangle.

Two versions have been implemented. The first version 3x3
super-samples the neighbourhood of a pixel, parameterised by a
distance δ that tells how far the super-samples are apart from each
other. This is depicted in the picture below in which the super-
samples for pixels (1,1) are depicted in black, and those for (2,1)
as an open circle. The samples are obtained by rendering a
triangle nine times into an accumulation buffer, each time shifted
by δ with respect to each other. The parameter δ allows balancing
the amount of blurring versus aliasing. Visual inspection of test
examples revealed that δ=1/3 is a (near) optimum case.

The case of δ=1/3 is a special case, because (as seen in the picture
below), the super-samples are now on a regular grid. This allows
for an optimisation: instead of rendering a triangle nine times, it is
simply rendered once at three times (in both x and y direction) the
resolution, thereby avoiding a lot of setup, and using more spatial
coherence.

TSyRx

MLyKx
u

m ++
++=

2

1

d

Ra

x

u +−=
∂
∂

d

Sb

y

u +−=
∂
∂

d

a

x

u −=
∂
∂

d

b

y

u −=
∂
∂

() ()() ()dbabam vvuu loglog,logmax −++=∆

∂
∂

∂
∂

∂
∂

∂
∂=

y

v

x

v

y

u

x

u
m ,,,maxlog ()7

() ()() ()dbabam vvuu loglog,logmax
2

1 2222 −++=∆

12

This was also implemented (for the general case of nxn super-
sampling with the distance between super-samples being 1/n).
Further optimisation is then possible by only checking for mipmap
switches once every n samples, in such a way that the check (and
possible switch) happens on a “middle super-sample”, so that the
combined colour results from the blending of super-samples from
different mipmap levels. This helps hide any artefacts associated
with mipmap level switching. For now, the smoothing filter kernel
was a block, but a more advanced filter profile could be applied in
the future.

The two pictures below show a texture map, textured on a rotated
square without super-sampling (Figure 1a), and that map textured
with 3x3 super-sampling (Figure 1b).

 Figure 1a Figure 1b

It is clear that Figure 1a shows many problems: there are jaggies
(both at the edges of the textured polygons and internally due to
sharp contrasts in the texture map), and detail that is a bit further
away (like the left-most vertical separation between the grey
bricks) disappears in the aliasing noise that results from the fine
detail in the original texture map (Figure 2). These problems are
largely alleviated in Figure 1b.

 Figure 2 Figure 3

4.4 Test results
The scanline algorithm with the midpoint-based texture mapping
algorithm was implemented on a PC. For comparison, we also
implemented a version of the same scanline algorithm using the
perspective division per pixel for texturing. Mipmapping, as well
as the two variants of super-sampling mentioned in Section 4.3,
were implemented for both midpoint and division algorithms.

The scan converter (which renders a square consisting of two
triangles, based on a 256x256 texture map) was tested with three
different animation sequences:

1. A textured square which rotates such that the projected area
varies between 0 and 100%. This test demonstrates the effect
of large differences in the u and v derivatives. Because of the
rotation, the aliasing of any edges (of the square and within
the texture) can be studied. Examples of frames from such a
test animation are the pictures in Figure 1a and 1b.

2. A square receding along the z-axis. This one shows the
effects of the mipmapping, as the mipmap level is switched
while the square gets farther away. An example of a frame of
such a test animation is shown in Figure 4a below (Figure 3
is the original texture map).

3. A square shrinking in size, and only showing the
corresponding part of the texture. This test allows varying the
triangle size while staying at the same mipmap level. An
example of a frame from such a test animation is shown in
Figure 4b below.

 Figure 4a Figure 4b

Performance measurements were taken for all three tests,
measuring the rendering time per frame as a function of the
number of pixels that are rendered during that frame. The results
obtained show that the midpoint implementation is typically twice
as fast as the implementation with the divisions, for large enough
triangles. The break-even point (which varies greatly between
different tests) was always below 10 pixels per triangle (and for
such small triangles it is questionable if you want perspective
correct mapping).

Of course the relative performance differences as measured on a
PC implementation are only indicative of the performance of a
hardware implementation. However, some observations can be
made:

• The while (“e compares favourably to 0”) loops
for re-enforcing the invariants for the different variables can
be executed in parallel. With a division-based solution this
costs a lot of silicon, but since these loops now only contain
additions and subtractions, they can be implemented with
very little silicon. This is very advantageous for the support
of fast multi-pass algorithms where many variables need to
be adjusted in this way. These passes can all be done in
parallel at low hardware cost. The only concern here is the
hardware required for the switch in mipmap levels. But since
mipmap level switching can be delayed if necessary, such
hardware can be shared along the passes.

13

• The exponent-selection to perform the integer log can be
hardwired in hardware (while it needs some shifting and
masking in software), so the mipmap level switch detection
can be implemented faster in hardware. The mipmap level
switch detection might also be performed in parallel: the
exact mipmap level switch position is not critical, so the
detection could be done in parallel, only interrupting the
“normal execution” when it is detected that the mipmap level
needs to be switched. The associated small latency is
probably not a problem.

• Our implementation so far still uses floating point numbers
for matrix elements K−T, and corresponding variables E, d, a
and b. Using a fixed point representation for these should
also further speed up the calculations.

5 FUTURE WORK
The promising results presented in the previous section indicate
that further studies in this area are warranted.

Despite all extensions, the algorithms described still perform point
sampling. Appropriate filtering should be added to better deal
with aliasing effects.

In case an update in the outermost loop of the algorithm as
presented in Section 3 leads to a large number of updates in the
innermost loop (which could be the case when using a fixed point
representation for u and v, instead of the integer representation
presented in this paper; or when not using mipmapping), further
speedups are possible. Let ix be the number of iterations of the
innermost while-loop after the most recent update of x, then ix,,
ix+1, ix+2, … is either a non-increasing or a non-decreasing
sequence of values. This may be exploited by the introduction of a
variable i to record this number of iterations. Instead of
incrementing or decrementing u a number of times with 1, u might
be updated with i followed by some updates with 1 (while
adjusting i).

The i-values for the different variables are a discrete
approximation of the jacobians for those variables (corresponding
more or less to the gears in [6]), and can as such be used to
perform mipmap level selection in an even more straightforward
manner than the method described in Section 4.2.2. Only the
upper few bits of the i-values are required for this purpose. The
jacobians can also be used to determine (an approximation of) the
footprint of a pixel, which is useful when performing filtering.

In the current implementation, the real-valued variables K−T and
E, d, a and b, are maintained in floating point representation. A
fixed point implementation is faster, and cheaper to build in
hardware. To this end, some attention should be directed to
scaling the transformation matrix such that it its values fit within
the fixed point range. Because of the homogeneous nature, this is
not a problem, apart from determining the correct scale factor.

6 CONCLUSIONS
We have derived elegant, perspective correct rendering algorithms
that are free from divisions in their loops. The tests in the Section
4.4 show that for scanline based rendering, the midpoint based
algorithm achieves about twice the performance compared to the
currently used algorithms, when implemented on a PC. Hardware
implementation is expected to reach similar performance gain,

while less hardware is required (no division hardware is needed).
Since less hardware is required for the inner loops, parallel
texturing units to implement multi-texturing become viable,
providing an additional performance gain. The extra setup costs
only matter for triangles which are so small that perspective
correct rendering is not important.

References

[1] Blinn, J.F. Hyperbolic Interpolation. IEEE Computer
Graphics and Applications, pp. 89−94, July 1992.

[2] Catmull, E., A.R. Smith. 3-D Transformations of Images
in Scanline Order. Computer Graphics (SIGGRAPH ’80
Proceedings), vol. 14, no.3, pp. 279−285, July 1980.

[3] Demirer, M. and R.L. Grimsdale. Approximation
Techniques for High Performance Texture Mapping.
Comput.&Graphics, vol. 20, no. 4, pp. 483−490, 1996

[4] Ewins, J.P., Waller, M.D., White, M., Lister, P.F. MIP-
map level selection for texture mapping, in IEEE
Transactions on Visualization and Computer Graphics,
vol. 4, no 4., pp. 17−29, Oct.−Dec. 1998

[5] Heckbert, P.S. and H.P. Moreton. Interpolation for
polygon texture mapping and shading, in State of the Art
in Computer Graphics, D. Rogers and R. Earnshaw,
editors; New York: Springer-Verlag, 1991.

[6] Mears, J. The Midpoint Algorithm for High Speed
Graphics. December, 1996, Web page at URL:
http://www.fitzharrys.freeserve.co.uk/midpoint/index.htm

[7] Pitteway, M.L.V. Algorithms for drawing ellipses or
hyperbolae with a digital plotter. Computer Journal, 1967,
10(3), pp. 282−289.

[8] Van Overveld, C.W.A.M., Course Notes Computer
Graphics (2K900), 1988. Eindhoven University of
Technology.

[9] Van Overveld, C.W.A.M, Applications of the method of
invariants in computer graphics, in Data Structures for
Raster Graphics, L.R.A. Kessener, F.J. Peters and M.L.P.
van Lierop editors; Eurographic Seminars, Berlin etc.
Springer-Verlag, 1986.

[10] Wolberg, G. Digital Image Warping. IEEE Computer
Society Press, 1990

	Algorithms for Division Free Perspective Correct Rendering
	INTRODUCTION
	PERSPECTIVE TRANSFORMATIONS
	MIDPOINT ALGORITHM
	Derivation of invariants
	Restoring the values of E and d
	Restoring invariant (6)
	Algorithm
	Setup

	INCORPORATION IN A SCANLINE ALGORITHM
	Extending a scanline algorithm
	Use of mipmaps
	Mipmap level coordinate systems
	Mipmap level switching

	Super-sampling
	Test results

	FUTURE WORK
	CONCLUSIONS

