
Hardware-Accelerated
Free-Form Deformation

Clint Chua and Ulrich Neumann

Integrated Media Systems Center

University of Southern California

Overview

• Motivation
• Background of FFDs
• OpenGL and the Proposed System
• Optimizations
• OpenGL Command Extensions

What is Deformation?

• Alteration of shape or dimension
– elastic deformation vs. rigid body

transformation

• Types of deformation
– pre-computed (keyframed) vs. dynamic

Motivation

• Need for a standard deformation API
– Integrated commands vs. custom code

• Integrate hardware components for real
time dynamic deformation
– Auxiliary components are simple and can

be reused

State of the Art

• Examples of two commercial products
that have hardware features that
support deformation
– Sony Playstation 2

• 10 Floating Point Multiply Accumulate units
• Kutaragi, et.al. ISSCC’99 pp. 256-259

– ATI Radeon GPU
• “Keyframe interpolating mechanism”
• http://www.ati.com

 Criteria for Our System

• Wanted to use a well known
deformation system

• Needed to be detached from physically-
based models
– Geometric vs. Physically-based

deformation

• Easily integrated into an existing
graphics pipeline

Free-Form Deformation

• Well-known geometric deformation
– Integrate into a graphics API

– Sederberg and Parry, Siggraph 1986

• Three different varieties
– Original, parallelpiped (Sederberg and Parry)

– Extended, regular solids (Coquilart) -- our method

– Arbitrary, arbitrary topology (MacCraken and Joy)

FFD Properties

• Applicable to nearly any type of
geometric models
– triangle patches to parametric surfaces

• Surface continuity and volume
preserving

• Can be applied hierarchically for local
and global deformation

FFD Background

• The “Jello” analogy
• The mathematical view

• where q is the deformed point, B is the
B-spline basis functions and (s,t,u) are
the parameterized coordinates

∑
=

+++=
3

0,,
,,,,)()()(),,(

nml
nmlnkmjlikji uBtBsBPutsq

How to Use an FFD (Step 1)

• Embed the object points in the
deformation region
– Involves a Newton-Raphson process

to solve:

• This results in a set of
parameterized coordinates for the
object

∑
=

+++ =−
3

0,,
,,,, 0)()()(

nml
kjinmlnkmjli XuBtBsBP

How to Use an FFD (cont’d)

• Move the control points to deform the
region of space

• Recalculate the new positions of the
points based on the new control point
locations

Example

7340 vertices and 14348 triangles

Another Example

1022 vertices and 1232 triangles

OpenGL and Our System

• Similarities between FFD and OpenGL
spline rendering system
– bivariate vs. trivariate hyperpatches

• OpenGL has a polynomial evaluator
system

• OpenGL can be extended to
accommodate the proposed system

System Overview

• Need to add a component to the
OpenGL rendering system:

FFD vertex
generator
sub-block

OpenGL triangle
rendering pipeline

Triangle Vertex
Stream

From CPU

Vector
Multiplier

1/6(1-3s+3s2-s3) 1/6(1-3t+3t2-t3) 1/6(1-3u+3u2-u3)

s t u Px Py Pz

reg reg reg

Vector
Accumulator

1) Parameterized local
coordinates are fed into the
polynomial evaluators

2) Basis functions are evaluated

3) Results are fed into the
vector multiplier with the
appropriate control points

4) The vector multipliers results
are accumulated in the vector
accumulator

5) This process is done for each
parameterized local coordinate
with all 64 control points

6) After all 64 loops have been
accumulated, the result is
passed to the OpenGL pipeline

To OpenGL pipeline

Parameterized local coordinates
Control
Points

Optimizations

• Data Interleaving and DMA
– Proper data arrangement so that the sub-

block is continually operating

• Control Point Cache
– Control Points are reused and may benefit

from a cache

Polynomial Coefficient Register File

• Recall that the B-spline basis functions are:

• A polynomial can be represented as a vector
of coefficients

• Store all 4 coefficient vectors then load the
appropriate vector when needed by the
polynomial evaluator

3
6
1

3

32
6
1

2

32
6
1

1

32
6
1

0

)(

)3331()(

)364()(

)331()(

uuB

uuuuB

uuuB

uuuuB

=

−++=

+−=

−+−=

Variations of Implementation

• Basic System
– Single sub-block is the simplest but slowest

• Fully Parallel System
– 64 sub-blocks operating in parallel

• Iterative Tree System
– Compromise between both extremes

Combination Generator

• Since the B-spline basis
are constantly being re-
evaluated, the system
may benefit from
evaluating all unique
results and store them in a
register file

R0

B0

B1

B2

B3

s

R1

B0

B1

B2

B3

t

R2

B0

B1

B2

B3

u

From Polynomial
Evaluator

To Vector
Multiplier

OpenGL Extensions
• OpenGL intrinsic vs. GLU

• Proposed GLU API that mimics the GLU API
for NURBS rendering
– gluNewFFDRenderer - generate a new FFD

object to refer to when rendering
– gluFFDProperty - change common properties like

line width, etc.
– gluFFDCallback - callback used to monitor the

progress of rendering and error monitoring
– gluFFDVolume - call used to generate the

deformed surface. You pass in the array of control
points and the parameterized local coordinates

Conclusions

• FFD is a well-known and flexible
geometric deformation technique

• Shown how FFD is integrated into
OpenGL as a standard deformation API

• Shown how FFD can be hardware
accelerated and integrated into the
existing OpenGL pipeline.

Acknowledgements

• This research has been funded by the
Integrated Media Systems Center,
A National Science Foundation
Engineering Research Center,
Cooperative Agreement No. EEC-
9529152

• Special Thanks to Dr. Tony De Rose
and James Gain

